Role of Indian Classical Music in Treating Alzheimer’s Disease and Related Dementias

Main Article Content

Neelima Chauhan Purva Gujar-Kale Mahesh Kale

Abstract

The prevalence of Alzheimer’s disease (AD) and Alzheimer’s disease related dementias (ADRD) is on rise all around the globe with limited treatment options. Current symptomatic pharmacological treatments are modestly effective and are associated with adverse side effects. Therefore, there is an increased interest in validating non-pharmacological alternatives to treat AD/ADRD. One of such alternatives is music therapy which has recently picked up an upsurge not only in treating mental disorders but also other disparities. Many systematic reviews and meta-analyses using PubMed/Medline, Web of Science, Scopus, Google Scholar, and Cochrane database searches have revealed that music-based interventions successfully improved mood, depression, anxiety, verbal fluency, gait/motor abnormalities, autobiographic and episodic memory, and cognition, in neurological disorders including AD/ADRD and other dementias. In that regard, targeted effects of Indian Classical Music (Raga) are worth deciphering. In contrast to general emotional upliftment induced by other musical genres, Raga has an ability to evoke specific emotions based on its defined notational structure arranged in a specific ascending/descending order, and these effects are further magnified when the Raga is sung/performed at a designated time of the day based on its circadian specificity. Ragas containing the predominance of major notes are known to activate default mode network via induction of dopaminergic pathways and evoke cheerful/ happy emotions, causing mind-wandering and self-referential mental activity. On the other hand, the Raga becomes incrementally sentimental as the proportion of minor notes increase in a Raga structure. Ragas can affect brain activity, emotions, and autonomic functions. This review elucidates enhanced therapeutic potential of Indian Classical Music (Raga) as an advanced music therapy, that has an ability to exert Raga-specific health-effects in a circadian-specific manner. Raga therapy may be an effective disease-modifying treatment for treating AD and other dementias.

Keywords: Aging, Dopaminergic, Large-Scale Brain Networks, Alzheimer’s Disease, Alzheimer’s Disease Related Dementias, Music-based Interventions

Article Details

How to Cite
CHAUHAN, Neelima; GUJAR-KALE, Purva; KALE, Mahesh. Role of Indian Classical Music in Treating Alzheimer’s Disease and Related Dementias. Medical Research Archives, [S.l.], v. 12, n. 6, june 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5388>. Date accessed: 22 july 2024. doi: https://doi.org/10.18103/mra.v12i6.5388.
Section
Research Articles

References

1. Alzheimer's disease facts and figures-2023. Alzheimers Dement. 2023;19(4):1598-1695.

2. Monteiro AR, Barbosa DJ, Remiao F, Silva R. Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol. 2023;211:115522.

3. Karkou V, Aithal S, Richards M, Hiley E, Meekums B. Dance movement therapy for dementia. Cochrane Database Syst Rev. 2023;8(8):CD011022.

4. Guidi J, Lucente M, Sonino N, Fava GA. Allostatic Load and Its Impact on Health: A Systematic Review. Psychother Psychosom. 2021;90(1):11-27.

5. Parker HW, Abreu AM, Sullivan MC, Vadiveloo MK. Allostatic Load and Mortality: A Systematic Review and Meta-Analysis. Am J Prev Med. 2022;63(1):131-140.

6. Misiak B, Loniewski I, Marlicz W, et al. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry. 2020;102:109951.

7. Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep. 2019;6:45-53.

8. Bao AM, Swaab DF. The stress systems in depression: a postmortem study. Eur J Psychotraumatol. 2014;5:26521.

9. Gasiorowska A, Wydrych M, Drapich P, et al. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci. 2021;13:654931.

10. Aquilani R, Cotta Ramusino M, Maestri R, et al. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci. 2023;15:1237469.

11. Smith GS, Kuwabara H, Yan H, et al. Serotonin Degeneration and Amyloid-beta Deposition in Mild Cognitive Impairment: Relationship to Cognitive Deficits. J Alzheimers Dis. 2023;96(1):215-227.

12. Baik JH. Stress and the dopaminergic reward system. Exp Mol Med. 2020;52(12): 1879-1890.

13. Quessy F, Bittar T, Blanchette LJ, Levesque M, Labonte B. Stress-induced alterations of mesocortical and mesolimbic dopaminergic pathways. Sci Rep. 2021;11(1):11000.

14. D'Amico D, Amestoy ME, Fiocco AJ. The association between allostatic load and cognitive function: A systematic and meta-analytic review. Psychoneuroendocrinology. 2020;121:104849.

15. Lenart-Bugla M, Szczesniak D, Bugla B, et al. The association between allostatic load and brain: A systematic review. Psychoneuroendocrinology. 2022;145:105917.

16. Krashia P, Nobili A, D'Amelio M. Unifying Hypothesis of Dopamine Neuron Loss in Neurodegenerative Diseases: Focusing on Alzheimer's Disease. Front Mol Neurosci. 2019;12:123.

17. James T, Kula B, Choi S, Khan SS, Bekar LK, Smith NA. Locus coeruleus in memory formation and Alzheimer's disease. Eur J Neurosci. 2021;54(8):6948-6959.

18. Morgan DG, May PC, Finch CE. Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease. J Am Geriatr Soc. 1987;35(4):334-345.

19. Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev. 2023;153: 105358.

20. Chen APF, Chen L, Kim TA, Xiong Q. Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines. 2021;9(6).

21. Paganini-Hill A, Bukhari S, Montine TJ, Corrada MM, Kawas CH. Alzheimer's Disease Neuropathologic Change and Vitamin Supplement Use Decades Earlier: The 90+ Study. Alzheimer Dis Assoc Disord. 2023;37 (1):1-6.

22. Ritchie K, Ritchie CW, Yaffe K, Skoog I, Scarmeas N. Is late-onset Alzheimer's disease really a disease of midlife? Alzheimers Dement (N Y). 2015;1(2):122-130.

23. Brucki SMD, Cesar-Freitas KG, Spera RR, Borges CR, Smid J. Are we ready to use anti-amyloid therapy in Alzheimer's disease? Arq Neuropsiquiatr. 2022;80(5 Suppl 1):15-23.

24. Liss JL, Seleri Assuncao S, Cummings J, et al. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer's disease (MCI and dementia) in primary care: a review and synthesis. J Intern Med. 2021;290 (2):310-334.

25. Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of Early Alzheimer's Disease: Clinical Practice in 2021. J Prev Alzheimers Dis. 2021;8(3):371-386.

26. Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol. 2020;18(11):1106-1125.

27. Pless A, Ware D, Saggu S, Rehman H, Morgan J, Wang Q. Understanding neuropsychiatric symptoms in Alzheimer's disease: challenges and advances in diagnosis and treatment. Front Neurosci. 2023;17:1263 771.

28. Iravani B, Abdollahi E, Eslamdoust-Siahestalkhi F, Soleimani R. Neuropsychiatric Symptoms of Alzheimer's Disease and Caregiver Burden. Front Neurol. 2022;13:877 143.

29. Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules. 2020;25(24).

30. Petersen RC, Wiste HJ, Weigand SD, et al. NIA-AA Alzheimer's Disease Framework: Clinical Characterization of Stages. Ann Neurol. 2021;89(6):1145-1156.

31. Varadharajan A, Davis AD, Ghosh A, et al. Guidelines for pharmacotherapy in Alzheimer's disease - A primer on FDA-approved drugs. J Neurosci Rural Pract. 2023;14(4):566-573.

32. Behfar Q, Richter N, Kural M, et al. Improved connectivity and cognition due to cognitive stimulation in Alzheimer's disease. Front Aging Neurosci. 2023;15:1140975.

33. Ralph SJ, Espinet AJ. Increased All-Cause Mortality by Antipsychotic Drugs: Updated Review and Meta-Analysis in Dementia and General Mental Health Care. J Alzheimers Dis Rep. 2018;2(1):1-26.

34. Assuncao SS, Sperling RA, Ritchie C, et al. Meaningful benefits: a framework to assess disease-modifying therapies in preclinical and early Alzheimer's disease. Alzheimers Res Ther. 2022;14(1):54.

35. Fonte C, Smania N, Pedrinolla A, et al. Comparison between physical and cognitive treatment in patients with MCI and Alzheimer's disease. Aging (Albany NY). 2019;11(10):3138 -3155.

36. Blackman J, Swirski M, Clynes J, Harding S, Leng Y, Coulthard E. Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer's disease: A systematic review. J Sleep Res. 2021;30(4):e13229.

37. Berg-Weger M, Stewart DB. Non-Pharmacologic Interventions for Persons with Dementia. Mo Med. 2017;114(2):116-119.

38. Quail Z, Carter MM, Wei A, Li X. Management of cognitive decline in Alzheimer's disease using a non-pharmacological intervention program: A case report. Medicine (Baltimore). 2020;99(21):e20128.

39. Harrison TC, Blozis SA, Schmidt B, et al. Music Compared with Auditory Books: A Randomized Controlled Study Among Long-Term Care Residents with Alzheimer's Disease or Related Dementia. J Am Med Dir Assoc. 2021;22(7):1415-1420.

40. Matziorinis AM, Koelsch S. The promise of music therapy for Alzheimer's disease: A review. Ann N Y Acad Sci. 2022;1516(1):11-17.

41. Bleibel M, El Cheikh A, Sadier NS, Abou-Abbas L. The effect of music therapy on cognitive functions in patients with Alzheimer's disease: a systematic review of randomized controlled trials. Alzheimers Res Ther. 2023;15(1):65.

42. Nayak S, Coleman PL, Ladanyi E, et al. The Musical Abilities, Pleiotropy, Language, and Environment (MAPLE) Framework for Understanding Musicality-Language Links Across the Lifespan. Neurobiol Lang (Camb). 2022;3 (4):615-664.

43. Gustavson DE, Coleman PL, Iversen JR, Maes HH, Gordon RL, Lense MD. Mental health and music engagement: review, framework, and guidelines for future studies. Transl Psychiatry. 2021;11(1):370.

44. Gonzalez-Hoelling S, Bertran-Noguer C, Reig-Garcia G, Suner-Soler R. Effects of a Music-Based Rhythmic Auditory Stimulation on Gait and Balance in Subacute Stroke. Int J Environ Res Public Health. 2021;18(4).

45. Mayer-Benarous H, Benarous X, Vonthron F, Cohen D. Music Therapy for Children With Autistic Spectrum Disorder and/or Other Neurodevelopmental Disorders: A Systematic Review. Front Psychiatry. 2021;12:643234.

46. Wang SG, Cevasco-Trotter AM, Silverman MJ, Yuan SH. A narrative review of music therapy for neuropsychiatric symptoms in Alzheimer's disease and rationale for protocolized music teletherapy. Front Med (Lausanne). 2023;10:1248245.

47. Babel S, Baral S, Srivastava A. Impact of Listening to Indian Classical Music, or Ragas, on the Electroencephalogram: A Meta-Analysis. Cureus. 2023;15(11):e49592.

48. Sharma S, Sasidharan A, Marigowda V, et al. Indian classical music with incremental variation in tempo and octave promotes better anxiety reduction and controlled mind wandering-A randomised controlled EEG study. Explore (NY). 2021;17(2):115-121.

49. Hendrix SB, Dickson SP. Editorial: Usefulness of Anchor Based Methods for Determining Clinically Meaningful Change in MCI due to AD. J Prev Alzheimers Dis. 2023;10(1):7-8.

50. Rafii MS, Aisen PS. Detection and treatment of Alzheimer's disease in its preclinical stage. Nat Aging. 2023;3(5):520-531.

51. Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q. Alzheimer's Disease: Epidemiology and Clinical Progression. Neurol Ther. 2022; 11(2):553-569.

52. Huang L, Huang Q, Xie F, Guo Q. Neuropsychiatric symptoms in Alzheimer's continuum and their association with plasma biomarkers. J Affect Disord. 2024;348:200-206.

53. Yoon EJ, Lee JY, Kwak S, Kim YK. Mild behavioral impairment linked to progression to Alzheimer's disease and cortical thinning in amnestic mild cognitive impairment. Front Aging Neurosci. 2022;14:1051621.

54. Papaliagkas V, Kalinderi K, Vareltzis P, Moraitou D, Papamitsou T, Chatzidimitriou M. CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci. 2023;24(10).

55. Sperling RA, Donohue MC, Raman R, et al. Association of Factors With Elevated Amyloid Burden in Clinically Normal Older Individuals. JAMA Neurol. 2020;77(6):735-745.

56. Vermunt L, Sikkes SAM, van den Hout A, et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 2019;15(7):888-898.

57. Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126-135.

58. Du C, Dang M, Chen K, Chen Y, Zhang Z. Divergent brain regional atrophy and associated fiber disruption in amnestic and non-amnestic MCI. Alzheimers Res Ther. 2023;15(1):199.

59. Albin RL, Burke JF, Koeppe RA, Giordani B, Gilman S, Frey KA. Assessing mild cognitive impairment with amyloid and dopamine terminal molecular imaging. J Nucl Med. 2013;54(6): 887-893.

60. Guzman-Ramos K, Osorio-Gomez D, Bermudez-Rattoni F. Cognitive Impairment in Alzheimer's and Metabolic Diseases: A Catecholaminergic Hypothesis. Neuroscience. 2022;497:308-323.

61. Blanco K, Salcidua S, Orellana P, et al. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer's disease. Alzheimers Res Ther. 2023;15(1):176.

62. Brito DVC, Esteves F, Rajado AT, et al. Assessing cognitive decline in the aging brain: lessons from rodent and human studies. NPJ Aging. 2023;9(1):23.

63. Lewis S. Unfolding cognitive decline mechanisms. Nat Rev Neurosci. 2023;24(7): 394.

64. Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis. 2021;81(3):871-920.

65. Cohen RA, Marsiske MM, Smith GE. Neuropsychology of aging. Handb Clin Neurol. 2019;167:149-180.

66. Soldan A, Pettigrew C, Zhu Y, et al. Association of Lifestyle Activities with Functional Brain Connectivity and Relationship to Cognitive Decline among Older Adults. Cereb Cortex. 2021;31(12):5637-5651.

67. Schnellbacher GJ, Hoffstaedter F, Eickhoff SB, et al. Functional Characterization of Atrophy Patterns Related to Cognitive Impairment. Front Neurol. 2020;11:18.

68. Tao J, Liu J, Chen X, et al. Mind-body exercise improves cognitive function and modulates the function and structure of the hippocampus and anterior cingulate cortex in patients with mild cognitive impairment. Neuroimage Clin. 2019;23:101834.

69. Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104-127.

70. Sala A, Caminiti SP, Presotto L, et al. In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer's disease phases. Alzheimers Res Ther. 2021;13 (1):187.

71. Taylor WD, Zald DH, Felger JC, et al. Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry. 2021.

72. Mariggio MA, Palumbi R, Vinella A, et al. DRD1 and DRD2 Receptor Polymorphisms: Genetic Neuromodulation of the Dopaminergic System as a Risk Factor for ASD, ADHD and ASD/ADHD Overlap. Front Neurosci. 2021;15:705890.

73. Kosillo P, Bateup HS. Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models. Front Neural Circuits. 2021;15:700968.

74. Paval D, Miclutia IV. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev Neurosci. 2021;43(2):73-83.

75. Huang Y, Yu S, Wilson G, et al. Altered Extended Locus Coeruleus and Ventral Tegmental Area Networks in Boys with Autism Spectrum Disorders: A Resting-State Functional Connectivity Study. Neuropsychiatr Dis Treat. 2021;17:1207-1216.

76. Berry AS, Shah VD, Baker SL, et al. Aging Affects Dopaminergic Neural Mechanisms of Cognitive Flexibility. J Neurosci. 2016;36(50): 12559-12569.

77. Backman L, Lindenberger U, Li SC, Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev. 2010;34(5):670-677.

78. Ciampa CJ, Parent JH, Lapoint MR, et al. Elevated Dopamine Synthesis as a Mechanism of Cognitive Resilience in Aging. Cereb Cortex. 2021.

79. De Marco M, Venneri A. Volume and Connectivity of the Ventral Tegmental Area are Linked to Neurocognitive Signatures of Alzheimer's Disease in Humans. J Alzheimers Dis. 2018;63(1):167-180.

80. D'Amelio M, Puglisi-Allegra S, Mercuri N. The role of dopaminergic midbrain in Alzheimer's disease: Translating basic science into clinical practice. Pharmacol Res. 2018; 130:414-419.

81. Lubec J, Kalaba P, Hussein AM, et al. Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Mol Psychiatry. 2021.

82. Meyer PT, Frings L, Rucker G, Hellwig S. (18)F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment. J Nucl Med. 2017;58(12):1888-1898.

83. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol. 2019;39(1):31-59.

84. Serra L, D'Amelio M, Esposito S, et al. Ventral Tegmental Area Disconnection Contributes Two Years Early to Correctly Classify Patients Converted to Alzheimer's Disease: Implications for Treatment. J Alzheimers Dis. 2021;82(3):985-1000.

85. Nobili A, Latagliata EC, Viscomi MT, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun. 2017;8: 14727.

86. Morgese MG, Trabace L. Monoaminergic System Modulation in Depression and Alzheimer's Disease: A New Standpoint? Front Pharmacol. 2019;10:483.

87. Matchett BJ, Grinberg LT, Theofilas P, Murray ME. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer's disease. Acta Neuropathol. 2021;141(5):631-650.

88. Dahl MJ, Bachman SL, Dutt S, et al. The integrity of dopaminergic and noradrenergic brain regions is associated with different aspects of late-life memory performance. Nat Aging. 2023;3(9):1128-1143.

89. Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci. 2023;17:1292 858.

90. Cabib S, Latagliata C, Orsini C. Role of Stress-Related Dopamine Transmission in Building and Maintaining a Protective Cognitive Reserve. Brain Sci. 2022;12(2).

91. Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci. 2021;276:119129.

92. Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer's disease. Mol Biol Rep. 2021;48(7):5629-5645.

93. Dhillon S. Aducanumab: First Approval. Drugs. 2021;81(12):1437-1443.

94. Rabinovici GD. Controversy and Progress in Alzheimer's Disease - FDA Approval of Aducanumab. N Engl J Med. 2021;385(9): 771-774.

95. Wichniak A, Samochowiec J, Szulc A, et al. The position statement of the Working Group of the Polish Psychiatric Association on the use of D2/D3 dopamine receptor partial agonists in the treatment of mental disorders. Psychiatr Pol. 2021;55(5):941-966.

96. Chen YJ, Chang MC, Jhang KM, Wang WF, Liao YC. Neuropsychiatric Symptoms Predict Faster Cognitive Decline in Dementia Collaborative Care Than Antipsychotic Use. Neuropsychiatr Dis Treat. 2024;20:689-696.

97. Ippoliti I, Ancidoni A, Da Cas R, Pierantozzi A, Vanacore N, Trotta F. Anti-dementia drugs: a descriptive study of the prescription pattern in Italy. Neurol Sci. 2023; 44(5):1587-1595.

98. Watt JA, Goodarzi Z, Veroniki AA, et al. Comparative Efficacy of Interventions for Aggressive and Agitated Behaviors in Dementia: A Systematic Review and Network Meta-analysis. Ann Intern Med. 2019;171(9): 633-642.

99. van den Elsen GA, Ahmed AI, Verkes RJ, et al. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia: A randomized controlled trial. Neurology. 2015;84(23):2338-2346.

100. Savaskan E, Mueller H, Hoerr R, von Gunten A, Gauthier S. Treatment effects of Ginkgo biloba extract EGb 761(R) on the spectrum of behavioral and psychological symptoms of dementia: meta-analysis of randomized controlled trials. Int Psychogeriatr. 2018;30(3):285-293.

101. O'Connor DW, Eppingstall B, Taffe J, van der Ploeg ES. A randomized, controlled cross-over trial of dermally-applied lavender (Lavandula angustifolia) oil as a treatment of agitated behaviour in dementia. BMC Complement Altern Med. 2013;13:315.

102. Watson K, Hatcher D, Good A. A randomised controlled trial of Lavender (Lavandula Angustifolia) and Lemon Balm (Melissa Officinalis) essential oils for the treatment of agitated behaviour in older people with and without dementia. Complement Ther Med. 2019;42:366-373.

103. Brueggen K, Kasper E, Ochmann S, et al. Cognitive Rehabilitation in Alzheimer's Disease: A Controlled Intervention Trial. J Alzheimers Dis. 2017;57(4):1315-1324.

104. Jung YH, Lee S, Kim WJ, Lee JH, Kim MJ, Han HJ. Effect of Integrated Cognitive Intervention Therapy in Patients with Mild to Moderate Alzheimer's Disease. Dement Neurocogn Disord. 2020;19(3):86-95.

105. Ouldred E, Bryant C. Dementia care. Part 2: understanding and managing behavioural challenges. Br J Nurs. 2008;17(4):242-247.

106. Popa LC, Manea MC, Velcea D, Salapa I, Manea M, Ciobanu AM. Impact of Alzheimer's Dementia on Caregivers and Quality Improvement through Art and Music Therapy. Healthcare (Basel). 2021;9(6).

107. Ferreri L, Mas-Herrero E, Cardona G, et al. Dopamine modulations of reward-driven music memory consolidation. Ann N Y Acad Sci. 2021;1502(1):85-98.

108. Arroyo-Anllo EM, Dauphin S, Fargeau MN, Ingrand P, Gil R. Music and emotion in Alzheimer's disease. Alzheimers Res Ther. 2019;11(1):69.

109. Mas-Herrero E, Dagher A, Farres-Franch M, Zatorre RJ. Unraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS. J Neurosci. 2021;41(17): 3889-3899.

110. Chanda ML, Levitin DJ. The neurochemistry of music. Trends Cogn Sci. 2013;17(4):179-193.

111. Groarke JM, Hogan MJ. Development and Psychometric Evaluation of the Adaptive Functions of Music Listening Scale. Front Psychol. 2018;9:516.

112. Haslbeck FB, Jakab A, Held U, Bassler D, Bucher HU, Hagmann C. Creative music therapy to promote brain function and brain structure in preterm infants: A randomized controlled pilot study. Neuroimage Clin. 2020;25:102171.

113. Sutcliffe R, Du K, Ruffman T. Music Making and Neuropsychological Aging: A Review. Neurosci Biobehav Rev. 2020;113:4 79-491.

114. Nobakht N, Kamgar M, Tavanaei M, Bilder RM, Nobakht E. Music and Medicine: Promoting Harmony for Health. Am J Med. 2024;137(2):92-98.

115. Siemer CP, Siemer LC, Schlesinger JJ. Music in Medicine: Novel Use of an Ancient Medium. Anesth Analg. 2023;137(3):708-713.

116. Lorek M, Bak D, Kwiecien-Jagus K, Medrzycka-Dabrowska W. The Effect of Music as a Non-Pharmacological Intervention on the Physiological, Psychological, and Social Response of Patients in an Intensive Care Unit. Healthcare (Basel). 2023;11(12).

117. Yin Z, Li Y, Bao Q, et al. Comparative efficacy of multiple non-pharmacological interventions for behavioural and psychological symptoms of dementia: A network meta-analysis of randomised controlled trials. Int J Ment Health Nurs. 2023.

118. Rossi E, Marrosu F, Saba L. Music Therapy as a Complementary Treatment in Patients with Dementia Associated to Alzheimer's Disease: A Systematic Review. J Alzheimers Dis. 2024;98(1):33-51.

119. Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol. 2024;35(1-2):31-44.

120. Deng Y, Wang H, Gu K, Song P. Alzheimer's disease with frailty: Prevalence, screening, assessment, intervention strategies and challenges. Biosci Trends. 2023;17(4):2 83-292.

121. Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials. Cell. 2023;186 (22):4757-4772.

122. Liu N, Liang X, Chen Y, Xie L. Recent trends in treatment strategies for Alzheimer(')s disease and the challenges: A topical advancement. Ageing Res Rev. 2024;94:102 199.

123. Lin TH, Liao YC, Tam KW, Chan L, Hsu TH. Effects of music therapy on cognition, quality of life, and neuropsychiatric symptoms of patients with dementia: A systematic review and meta-analysis of randomized controlled trials. Psychiatry Res. 2023;329:115498.

124. Aalbers S, Fusar-Poli L, Freeman RE, et al. Music therapy for depression. Cochrane Database Syst Rev. 2017;11(11):CD004517.

125. Reschke-Hernandez AE, Gfeller K, Oleson J, Tranel D. Music Therapy Increases Social and Emotional Well-Being in Persons With Dementia: A Randomized Clinical Crossover Trial Comparing Singing to Verbal Discussion. J Music Ther. 2023;60(3):314-342.

126. Pac Soo V, Baker FA, Sousa TV, et al. Statistical analysis plan for HOMESIDE: a randomised controlled trial for home-based family caregiver-delivered music and reading interventions for people living with dementia. Trials. 2023;24(1):316.

127. Baker FA, Pac Soo V, Bloska J, et al. Home-based family caregiver-delivered music and reading interventions for people living with dementia (HOMESIDE trial): an international randomised controlled trial. EClinicalMedicine. 2023;65:102224.

128. Sarkamo T. Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation: A critical review. Ann Phys Rehabil Med. 2018;61(6): 414-418.

129. Vanstone AD, Cuddy LL, Duffin JM, Alexander E. Exceptional preservation of memory for tunes and lyrics: case studies of amusia, profound deafness, and Alzheimer's disease. Ann N Y Acad Sci. 2009;1169:291-294.

130. Groussard M, Viader F, Landeau B, Desgranges B, Eustache F, Platel H. Neural correlates underlying musical semantic memory. Ann N Y Acad Sci. 2009;1169:278-281.

131. Jacobsen JH, Stelzer J, Fritz TH, Chetelat G, La Joie R, Turner R. Why musical memory can be preserved in advanced Alzheimer's disease. Brain. 2015;138(Pt 8):2438-2450.

132. Baird A, Samson S. Music and dementia. Prog Brain Res. 2015;217:207-235.

133. Simmons-Stern NR, Deason RG, Brandler BJ, et al. Music-based memory enhancement in Alzheimer's disease: promise and limitations. Neuropsychologia. 2012;50(14):3295-3303.

134. Deason RG, Strong JV, Tat MJ, Simmons-Stern NR, Budson AE. Explicit and implicit memory for music in healthy older adults and patients with mild Alzheimer's disease. J Clin Exp Neuropsychol. 2019;41(2):158-169.

135. de la Rubia Orti JE, Garcia-Pardo MP, Iranzo CC, et al. Does Music Therapy Improve Anxiety and Depression in Alzheimer's Patients? J Altern Complement Med. 2018;24(1):33-36.

136. Abraha I, Rimland JM, Trotta FM, et al. Systematic review of systematic reviews of non-pharmacological interventions to treat behavioural disturbances in older patients with dementia. The SENATOR-OnTop series. BMJ Open. 2017;7(3):e012759.

137. Leggieri M, Thaut MH, Fornazzari L, et al. Music Intervention Approaches for Alzheimer's Disease: A Review of the Literature. Front Neurosci. 2019;13:132.

138. Gomez Gallego M, Gomez Garcia J. Music therapy and Alzheimer's disease: Cognitive, psychological, and behavioural effects. Neurologia. 2017;32(5):300-308.

139. van der Steen JT, van Soest-Poortvliet MC, van der Wouden JC, Bruinsma MS, Scholten RJ, Vink AC. Music-based therapeutic interventions for people with dementia. Cochrane Database Syst Rev. 2017;5(5):CD 003477.

140. van der Steen JT, Smaling HJ, van der Wouden JC, Bruinsma MS, Scholten RJ, Vink AC. Music-based therapeutic interventions for people with dementia. Cochrane Database Syst Rev. 2018;7(7):CD003477.

141. Garcia-Casares N, Moreno-Leiva RM, Garcia-Arnes JA. [Music therapy as a non-pharmacological treatment in Alzheimer's disease. A systematic review]. Rev Neurol. 2017;65(12):529-538.

142. Colverson AJ, Trifilio E, Williamson JB. Music, Mind, Mood, and Mingling in Alzheimer's Disease and Related Dementias: A Scoping Review. J Alzheimers Dis. 2022;86(4):1569-1588.

143. Yang H, Luo Y, Hu Q, Tian X, Wen H. Benefits in Alzheimer's Disease of Sensory and Multisensory Stimulation. J Alzheimers Dis. 2021;82(2):463-484.

144. Brancatisano O, Baird A, Thompson WF. Why is music therapeutic for neurological disorders? The Therapeutic Music Capacities Model. Neurosci Biobehav Rev. 2020;112: 600-615.

145. Ganguli KK, Rao P. On the perception of raga motifs by trained musicians. J Acoust Soc Am. 2019;145(4):2418.

146. Konsam M, Praharaj SK, Panda S, Shetty J, Ravishankar N, D'Souza SRB. Effectiveness of health literacy and relaxing music on quality of sleep and risk for antenatal depression. Indian J Psychiatry. 2023;65(10):1035-1043.

147. Castellano MA, Bharucha JJ, Krumhansl CL. Tonal hierarchies in the music of north India. J Exp Psychol Gen. 1984;113(3):394-412.

148. Valla JM, Alappatt JA, Mathur A, Singh NC. Music and Emotion-A Case for North Indian Classical Music. Front Psychol. 2017;8: 2115.

149. Midya V, Valla J, Balasubramanian H, Mathur A, Singh NC. Cultural differences in the use of acoustic cues for musical emotion experience. PLoS One. 2019;14(9):e0222380.

150. Rohrmeier M, Widdess R. Incidental Learning of Melodic Structure of North Indian Music. Cogn Sci. 2017;41(5):1299-1327.

151. Balasubramanian SV, Balasubramanian G, Ramanathan G. Integrative Medicine System Based on Music. Altern Ther Health Med. 2016;22 Suppl 1:14-23.

152. Gandhe V, Tare M. Therapeutic effects of ancient Indian classical music. Indian Journal of Applied Research. 2020;10(8):41-43.

153. Desai NM, Sanjay H, Desai DM, Kunikullaya K, Sinha AK. An Overview of the Indian System of Raagas and their Positive Effects on Health. Journal of Drugs Addiction & Therapeutics SRC/JDAT-112 Page. 2021;3: 3-6.

154. Sanyal S, Banerjee A, Basu M, Nag S, Ghosh D, Karmakar S. Do musical notes correlate with emotions? A neuro-acoustical study with Indian classical music. Paper presented at: Proceedings of Meetings on Acoustics 179AS A2020.

155. Kaufmann W. Rasa, rāga-mālā and performance times in North Indian rāgas. Ethnomusicology. 1965;9(3):272-291.

156. Hegde S. Music therapy for mental disorder and mental health: the untapped potential of Indian classical music. BJPsych Int. 2017;14(2):31-33.

157. Krishnaswamy A. Application of pitch tracking to South Indian classical music. Paper presented at: 2003 International Conference on Multimedia and Expo. ICME'03. Proceedings (Cat. No. 03TH8698)2003.

158. Mathur A, Vijayakumar SH, Chakrabarti B, Singh NC. Emotional responses to Hindustani raga music: the role of musical structure. Front Psychol. 2015;6:513.

159. Schofield KB. Emotions in Indian music history: anxiety in late Mughal Hindustan. South Asian Hist Cult. 2021;12(2-3):182-205.

160. Bowling DL, Sundararajan J, Han S, Purves D. Expression of emotion in Eastern and Western music mirrors vocalization. PLoS One. 2012;7(3):e31942.

161. Ferreri L, Rodriguez-Fornells A. Memory modulations through musical pleasure. Ann N Y Acad Sci. 2022;1516(1):5-10.

162. Ferreri L, Mas-Herrero E, Zatorre RJ, et al. Dopamine modulates the reward experiences elicited by music. Proc Natl Acad Sci U S A. 2019;116(9):3793-3798.

163. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011;14(2):257-262.

164. Sharma YMaAK. Effects of Music on Mental Health and Longevity. World Journal of Pharmaceutical Research. 2020;9(4):305-312.

165. Karuna N, Srinivasan TM, Nagendra H. Review of Rāgās and its Rasās in Indian music and its possible applications in therapy. International Journal of Yoga-Philosophy, Psychology and Parapsychology. 2013;1(1): 21.

166. Nagarajan K, Srinivasan TM, Ramarao NH. Immediate effect of listening to Indian raga on attention and concentration in healthy college students: A comparative study. Journal of Health Research and Reviews. 2015;2(3): 103.

167. Nayar S. Bhatkhande's contribution to music: A historical perspective. Popular Prakashan; 1989.

168. Jumisree Sarmah Pathak AKS. Therapeutic Effects of Hindustani Classical Music with Reference to Raga Drabari Kanada, Raga Bageshree and Raga Malkauns. GAP BODHI TARU-A Global Journal of Humanities-Special Issue on Indian Knowledge System. 2023;VI:104-109.

169. Priyadarshini S. How Hindustani classical ragas tickle our emotions. Published online 8 May 2015. 2015.

170. Moore S. A Comparative Study of the Flat Second Pitch Degree in North Indian Classical, Ottoman Or Arabian Influenced, Western, Heavy Metal and Film Musics, University of Sheffield, Department of Music; 2014.

171. Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A. 2001;98(20):11818-11823.

172. Koelsch S. Investigating the Neural Encoding of Emotion with Music. Neuron. 2018;98(6):1075-1079.

173. Zatorre RJ. Musical pleasure and reward: mechanisms and dysfunction. Ann N Y Acad Sci. 2015;1337:202-211.

174. Mallik A, Chanda ML, Levitin DJ. Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Sci Rep. 2017;7:41952.

175. Hanba C, Hanba D. Opioid and Drug Prevalence in Top 40's Music: A 30 Year Review. J Am Board Fam Med. 2018;31(5): 761-767.

176. Mas-Herrero E, Ferreri L, Cardona G, et al. The role of opioid transmission in music-induced pleasure. Ann N Y Acad Sci. 2022.

177. Caria A, Venuti P, de Falco S. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders. Cereb Cortex. 2011;21 (12):2838-2849.

178. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59-70.

179. Nomi JS, Molnar-Szakacs I, Uddin LQ. Insular function in autism: Update and future directions in neuroimaging and interventions. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:412-426.

180. Usui C, Kirino E, Tanaka S, et al. Music Intervention Reduces Persistent Fibromyalgia Pain and Alters Functional Connectivity Between the Insula and Default Mode Network. Pain Med. 2020;21(8):1546-1552.

181. Alluri V, Toiviainen P, Jaaskelainen IP, Glerean E, Sams M, Brattico E. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage. 2012;59(4):3677-3689.

182. Toiviainen P, Alluri V, Brattico E, Wallentin M, Vuust P. Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data. Neuroimage. 2014;88:170-180.

183. Grahn JA. Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci. 2012;4(4):585-606.

184. Schlaug G. Musicians and music making as a model for the study of brain plasticity. Prog Brain Res. 2015;217:37-55.

185. Olshansky MP, Bar RJ, Fogarty M, DeSouza JF. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music. Neurocase. 2015;21(5):607-617.

186. Chen X, Liu F, Yan Z, et al. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine (Baltimore). 2018;97(48):e13387.

187. Lopis D, Le Pape T, Manetta C, Conty L. Sensory Cueing of Autobiographical Memories in Normal Aging and Alzheimer's Disease: A Comparison Between Visual, Auditory, and Olfactory Information. J Alzheimers Dis. 2021; 80(3):1169-1183.

188. Sharma A, Moon E, Kim G, Kang SU. Perspectives of Circadian-Based Music Therapy for the Pathogenesis and Symptomatic Treatment of Neurodegenerative Disorders. Front Integr Neurosci. 2021;15:769142.

189. Agrawal T, Shanahan, D., Huron, D., & Keller, H. . Time-of-day practices echo circadian physiological arousal: An enculturated embodied practice in Hindustani classical music. Musicae Scientiae. 2023;27(1):70-93.

190. Ram K. Nawasalkar1 PKB. Analytical and Comparative Study on effect of Indian Classical Music on human body using EEG based signals. International Journal of Modern Engineering Research (IJMER) 2012;2(5):3289 -3291.

191. Ghosh A, Singh S, S M, Jagtap T, Issac TG. Music and the aging brain - Exploring the role of long-term Carnatic music training on cognition and gray matter volumes. J Neurosci Rural Pract. 2024;15(2):327-333.

192. Gupta A, Bhushan B, Behera L. Neural response to sad autobiographical recall and sad music listening post recall reveals distinct brain activation in alpha and gamma bands. PLoS One. 2023;18(1):e0279814.

193. Dharmadhikari AS, Tandle AL, Jaiswal SV, Sawant VA, Vahia VN, Jog N. Frontal Theta Asymmetry as a Biomarker of Depression. East Asian Arch Psychiatry. 2018;28(1):17-22.

194. Sarkar J BU. An effect of Raga Therapy on our human body. Journal of Humanities and Social Science Research. 2015;1(1):40-43.

195. Sanyal S, Nag S, Banerjee A, Sengupta R, Ghosh D. Music of brain and music on brain: a novel EEG sonification approach. Cogn Neurodyn. 2019;13(1):13-31.

196. Shyam N. The Impact of Hindustani raga Sangit on the Human Brain. International Journal of Interdisciplinary and Multidisciplinary Studies (IJIMS). 2021;8(2):70-74.

197. Ahuja S, Gupta RK, Damodharan D, et al. Effect of music listening on P300 event-related potential in patients with schizophrenia: A pilot study. Schizophr Res. 2020;216:85-96.

198. Mazaheri A, Segaert K, Olichney J, et al. EEG oscillations during word processing predict MCI conversion to Alzheimer's disease. Neuroimage Clin. 2018;17:188-197.

199. Wang R, Wang J, Yu H, Wei X, Yang C, Deng B. Decreased coherence and functional connectivity of electroencephalograph in Alzheimer's disease. Chaos. 2014;24(3):033136.

200. Guntekin B, Saatci E, Yener G. Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Res. 2008;1235:109-116.

201. Garces P, Angel Pineda-Pardo J, Canuet L, et al. The Default Mode Network is functionally and structurally disrupted in amnestic mild cognitive impairment - a bimodal MEG-DTI study. Neuroimage Clin. 2014;6:214-221.

202. Richardson GE, Jessup GT, Beall BS, Reilley RR, Nixon CJ. Assessment methods and procedures in corporate health programs. Health Educ. 1986;17(1):22-26.

203. Guntekin B, Hanoglu L, Akturk T, et al. Impairment in recognition of emotional facial expressions in Alzheimer's disease is represented by EEG theta and alpha responses. Psychophysiology. 2019;56(11):e13434.

204. Patra S. Sukshma sareera (Astral Body) beyond our comprehension. International Journal of Yoga-Philosophy, Psychology and Parapsychology. 2017;5(2):29-29.

205. Loizzo JJ. The subtle body: an interoceptive map of central nervous system function and meditative mind-brain-body integration. Ann N Y Acad Sci. 2016;1373(1): 78-95.

206. Loizzo J. Meditation research, past, present, and future: perspectives from the Nalanda contemplative science tradition. Ann N Y Acad Sci. 2014;1307(1):43-54.

207. Sanivarapu SL. India's rich musical heritage has a lot to offer to modern psychiatry. Indian J Psychiatry. 2015;57(2):210-213.

208. Veerabrahmachar R, Bista S, Bokde R, Jasti N, Bhargav H, Bista S. Immediate Effect of Nada Yoga Meditation on Energy Levels and Alignment of Seven Chakras as Assessed by Electro-photonic Imaging: A Randomized Controlled Crossover Pilot Study. Adv Mind Body Med. 2023;37(1):11-16.

209. Mikes S. Nada Yoga. [https://stephanmikescom]. 2022.

210. Leadbeater C. The Chakras. Vol Second Edition. Second Edition ed. Theosophical Publishing House, Wheaton, IL, USA: Quest Books; 2013.

211. Shannahoff-Khalsa D. Lateralized rhythms of the central and autonomic nervous systems. Int J Psychophysiol. 1991;11(3):225-251.

212. Sweta KM, Awasthi HH, Godbole A, Prajapati S. Physio-anatomical resemblance of inferior hypogastric plexus with Muladhara Chakra: A cadaveric study. Ayu. 2017;38(1-2):7-9.