Current Vaccine and Efficacy of COVID-19 in Latin America: Challenges and need for updated public health policy

Main Article Content

Marco Villanueva Reza Sebastián Rodríguez-Llamazares Alvaro López Iñiguez Santiago Montiel Romero Arturo Galindo Fraga

Abstract

In Latin America, the COVID-19 pandemic, which initially surged and is now a constant presence, has brought about significant health challenges due to disparities and differences in regional responses. Vaccination is not only a necessity but also a responsibility as the primary tool for prevention. However, its implementation has not been consistent across countries, leading to various challenges such as global demand, initial high costs, infrastructure limitations for distribution, public hesitance, and misinformation. Other issues, like vaccine efficacy in immunocompromised patients and the use of different vaccines, were initially questioned but are now regarded as strategies to protect patients. This region, with its unique traditions, also faces several risk factors including vaccine supply shortages, lack of vaccine manufacturing, overcrowded cities, and an increasing migrant population that adds to the vulnerability of the people, challenging countries to strive for equity in prevention strategies. It is important to address individual strategies in communities to increase vaccine uptake as part of public health policy, and collaboration between countries should be encouraged to reach more people. This review will provide information about the COVID-19 vaccines available in the region, their characteristics and composition, their use across countries, and the reported effectiveness in the general population and among those with weakened immune systems.

Article Details

How to Cite
REZA, Marco Villanueva et al. Current Vaccine and Efficacy of COVID-19 in Latin America: Challenges and need for updated public health policy. Medical Research Archives, [S.l.], v. 12, n. 6, june 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5393>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v12i6.5393.
Section
Research Articles

References

1. WHO. COVID-19 Epidemiological Update.; 2024.
2. Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-sars-cov-2 vaccines: Mechanism of action, efficacy and safety. Infect Drug Resist. 2021;14:3459-3476. Doi:10.2147/IDR.S315727
3. Kashte S, Gulbake A, El-Amin SF, Gupta A. COVID-19 vaccines: rapid development, implications, challenges and future prospects. Hum Cell. 2021;34(3):711-733. Doi:10.1007/s13577-021-00512-4
4. Hernández RM, Esteban RFC, Mamani-Benito O, et al. Latin American Scientific Production on COVID-19 Vaccines. Ethiop J Health Sci. 2022;32(2):235-242. Doi:10.4314/ejhs.v32i2.3
5. Alnaimat F, Sweis JJG, Jansz J, et al. Vaccination in the Era of Immunosuppression. Vaccines (Basel). 2023;11(9). Doi:10.3390/vaccines11091446
6. Urrunaga-Pastor D, Fernandez-Guzman D, Caira-Chuquineyra B, Herrera-Añazco P, Benites-Zapata VA, Bendezu-Quispe G. Prevalence and factors associated with not receiving the booster dose of the COVID-19 vaccine in adults in Latin America and the Caribbean. Travel Med Infect Dis. 2022;50. Doi:10.1016/j.tmaid.2022.102409
7. Nogareda F, Regan AK, Couto P, et al. Effectiveness of COVID-19 vaccines against hospitalisation in Latin America during three pandemic waves, 2021–2022: a test-negative case-control design. Lancet Regional Health - Americas. 2023;27. Doi:10.1016/j.lana.2023.100626
8. Cameron-Blake E, Tatlow H, Andretti B, et al. A panel dataset of COVID-19 vaccination policies in 185 countries. Nat Hum Behav. 2023;7(8):1402-1413. Doi:10.1038/s41562-023-01615-8
9. Babel N, Hugo C, Westhoff TH. Vaccination in patients with kidney failure: lessons from COVID-19. Nat Rev Nephrol. 2022;18(11):708-723. Doi:10.1038/s41581-022-00617-5
10. Soheili M, Khateri S, Moradpour F, et al. The efficacy and effectiveness of COVID-19 vaccines around the world: a mini-review and meta-analysis. Ann Clin Microbiol Antimicrob. 2023;22(1). Doi:10.1186/s12941-023-00594-y
11. Cheifet B. Technologies to advance COVID-19 vaccine equity. Nat Biotechnol. 2021;39(12):1477. Doi:10.1038/s41587-021-01167-0
12. Gupta P, Gupta V, Singh CM, Singhal L. Emergence of COVID-19 Variants: An Update. Cureus. Published online July 3, 2023. Doi:10.7759/cureus.41295
13. Abdoli A, Jamshidi H, Taqavian M, Baghal ML, Jalili H. Omicron-specific and bivalent omicron-containing vaccine candidates elicit potent virus neutralisation in the animal model. Sci Rep. 2024;14(1). Doi:10.1038/s41598-023-50822-w
14. Glaubitz A, Fu F. Population heterogeneity in vaccine coverage impacts epidemic thresholds and bifurcation dynamics. Heliyon. 2023;9(9). Doi:10.1016/j.heliyon.2023.e19094
15. Carrat F, Villarroel PMS, Lapidus N, et al. Heterogeneous SARS-CoV-2 humoral response after COVID-19 vaccination and/or infection in the general population. Sci Rep. 2022;12(1). Doi:10.1038/s41598-022-11787-4
16. Lynn DJ, Benson SC, Lynn MA, Pulendran B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol. 2022;22(1):33-46. Doi:10.1038/s41577-021-00554-7
17. Soni GK, Seth S, Arora S, et al. Harnessing the Power of Collaboration to Expand the Coverage and Equity of COVID-19 Vaccinations in India: A Community Collaboration Model. Vaccines (Basel). 2023;11(6). Doi:10.3390/vaccines11061022
18. Utami AM, Rendrayani F, Khoiry QA, et al. Economic evaluation of COVID-19 vaccination: A systematic review. J Glob Health. 2023;13. Doi:10.7189/jogh.13.06001
19. Vardavas C, Zisis K, Nikitara K, et al. Cost of the COVID-19 pandemic versus the cost-effectiveness of mitigation strategies in EU/UK/OECD: A systematic review. BMJ Open. 2023;13(10). Doi:10.1136/bmjopen-2023-077602
20. Shoham S, Batista C, Ben Amor Y, et al. Vaccines and therapeutics for immunocompromised patients with COVID-19. EClinicalMedicine. 2023;59. Doi:10.1016/j.eclinm.2023.101965
21. Ljungman P. Vaccination of immunocompromised patients. Clinical Microbiology and Infection. 2012;18(SUPPL. 5):93-99. Doi:10.1111/j.1469-0691.2012.03971.x
22. Mehrabi Nejad MM, Moosaie F, Dehghanbanadaki H, et al. Immunogenicity of COVID-19 mRNA vaccines in immunocompromised patients: a systematic review and meta-analysis. Eur J Med Res. 2022;27(1). Doi:10.1186/s40001-022-00648-5
23. Park JK, Lee YJ, Shin K, et al. Impact of temporary methotrexate discontinuation for 2 weeks on immunogenicity of seasonal influenza vaccination in patients with rheumatoid arthritis: A randomised clinical trial. Ann Rheum Dis. 2018;77(6):898-904. Doi:10.1136/annrheumdis-2018-213222
24. Kapetanovic MC, Saxne T, Sjöholm A, Truedsson L, Jönsson G, Geborek P. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal polysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology. 2006;45(1):106-111. Doi:10.1093/rheumatology/kei193
25. Haroon M, Adeeb F, Eltahir A, Harney S. The uptake of influenza and pneumococcal vaccination among immunocompromised patients attending rheumatology outpatient clinics. Joint Bone Spine. 2011;78(4):374-377. Doi:10.1016/j.jbspin.2010.10.012
26. Borte S, Liebert UG, Borte M, Sack U. Efficacy of measles, mumps and rubella revaccination in children with juvenile idiopathic arthritis treated with methotrexate and etanercept. Rheumatology. 2009;48(2):144-148. Doi:10.1093/rheumatology/ken436
27. Avouac J, Miceli-Richard C, Combier A, et al. Risk factors of impaired humoral response to COVID-19 vaccination in rituximab-Treated patients. Rheumatology (United Kingdom). 2022;61(SI2):SI163-SI168. Doi:10.1093/rheumatology/keab815
28. Hua C, Morel J, Ardouin E, et al. Reasons for non-vaccination in French rheumatoid arthritis and spondyloarthritis patients. Rheumatology (United Kingdom). 2014;54(4):748-750. Doi:10.1093/rheumatology/keu531
29. See KC. Vaccination for the Prevention of Infection among Immunocompromised Patients: A Concise Review of Recent Systematic Reviews. Vaccines (Basel). 2022;10(5). Doi:10.3390/vaccines10050800
30. Haddiya I. Current knowledge of vaccinations in chronic kidney disease patients. Int J Nephrol Renovasc Dis. 2020;13:179-185. Doi:10.2147/IJNRD.S231142
31. Thomson D, Stang A, Owoyemi I. Chronic kidney disease and vaccinations–A practical guide for primary care providers. J Natl Med Assoc. 2022;114(3):S20-S24. Doi:10.1016/j.jnma.2022.05.003
32. Evans RA, Dube S, Lu Y, et al. Impact of COVID-19 on immunocompromised populations during the Omicron era: insights from the observational population-based INFORM study. The Lancet Regional Health - Europe. 2023;35. Doi:10.1016/j.lanepe.2023.100747
33. Garnica M, Aiello A, Ligotti ME, et al. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int J Mol Sci. 2022;23(17). Doi:10.3390/ijms23179797
34. Villar-Álvarez F, de la Rosa-Carrillo D, Fariñas-Guerrero F, Jiménez-Ruiz CA. Immunosenescence, Immune Fitness and Vaccination Schedule in the Adult Respiratory Patient. Open Respiratory Archives. 2022;4(3). Doi:10.1016/j.opresp.2022.100181
35. Hou Y, Chen M, Bian Y, et al. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines. 2024;9(1). Doi:10.1038/s41541-024-00874-4
36. Yuan Y, Jahani E, Zhao S, Ahn YY, Pentland AS. Implications of COVID-19 vaccination heterogeneity in mobility networks. Commun Phys. 2023;6(1). Doi:10.1038/s42005-023-01325-7
37. Zhang R, Liu D, Leung KY, et al. Immunogenicity of a Heterologous Prime-Boost COVID-19 Vaccination with mRNA and Inactivated Virus Vaccines Compared with Homologous Vaccination Strategy against SARS-CoV-2 Variants. Vaccines (Basel). 2022;10(1). Doi:10.3390/vaccines10010072
38. Au WY, Cheung PPH. Effectiveness of heterologous and homologous covid-19 vaccine regimens: Living systematic review with network meta-analysis. The BMJ. Published online 2022. Doi:10.1136/bmj-2022-069989
39. Assawasaksakul T, Sathitratanacheewin S, Vichaiwattana P, Wanlapakorn N, Poovorawan Y, Kittanamongkolchai W. Immunogenicity, safety and reactogenicity of a heterogeneous booster following the CoronaVac inactivated SARS-CoV-2 vaccine in patients with SLE: A case series. RMD Open. 2021;7(3). Doi:10.1136/rmdopen-2021-002019
40. Langwig KE, Wargo AR, Jones DR, et al. Vaccine effects on heterogeneity in susceptibility and implications for population health management. mBio. 2017;8(6). Doi:10.1128/mBio.00796-17
41. LaRotta J, Escobar O, Ávila-Aguero ML, et al. COVID-19 in Latin America: A Snapshot in Time and the Road Ahead. Infect Dis Ther. 2023;12(2):389-410. Doi:10.1007/s40121-022-00748-z
42. LaRotta J, Escobar O, Ávila-Aguero ML, et al. COVID-19 in Latin America: A Snapshot in Time and the Road Ahead. Infect Dis Ther. 2023;12(2):389-410. Doi:10.1007/s40121-022-00748-z
43. Lucero-Prisno DE, Shomuyiwa DO, Vicente CR, et al. Achieving herd immunity in South America. Glob Health Res Policy. 2023;8(1). Doi:10.1186/s41256-023-00286-2
44. Mesa-Vieira C, Botero-Rodríguez F, Padilla-Muñoz A, Franco OH, Gómez-Restrepo C. The Dark Side of the Moon: Global challenges in the distribution of vaccines and implementation of vaccination plans against COVID-19. Maturitas. 2021;149:37-39. Doi:10.1016/j.maturitas.2021.05.003
45. Mesa Vieira C, Franco OH, Gómez Restrepo C, Abel T. COVID-19: The forgotten priorities of the pandemic. Maturitas. 2020;136:38-41. Doi:10.1016/j.maturitas.2020.04.004
46. Odone A, Ferrari A, Spagnoli F, et al. Effectiveness of interventions that apply new media to improve vaccine uptake and vaccine coverage: A systematic review. Hum Vaccin Immunother. 2015;11(1):72-82. Doi:10.4161/hv.34313
47. Federico A, Ariel B, Adrián S, et al. Cost-effectiveness of COVID-19 vaccination in Latin America and the Caribbean: an analysis in Argentina, Brazil, Chile, Colombia, Costa Rica, Mexico, and Peru. Cost Effectiveness and Resource Allocation. 2023;21(1). Doi:10.1186/s12962-023-00430-2
48. Avila Agüero ML, Castillo JB Del, Falleiros-Arlant LH, et al. Risks of low vaccination coverage and strategies to prevent the resurgence of vaccine-preventable diseases in infants in the COVID-19 pandemic scenario: recommendations for Latin America and the Caribbean by the group of experts on infant immunization for Latin America. Expert Rev Vaccines. 2023;22(1):1091-1101. Doi:10.1080/14760584.2023.2271057
49. Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. New England Journal of Medicine. 2021;385(3):239-250. Doi:10.1056/nejmoa2107456
50. Hause AM, Marquez P, Zhang B, et al. Morbidity and Mortality Weekly Report Safety Monitoring of Bivalent COVID-19 MRNA Vaccine Booster Doses Among Persons Aged ≥12 Years-United States, August 31-October 23, 2022.; 2022.
51. Karlstad Ø, Hovi P, Husby A, et al. SARS-CoV-2 Vaccination and Myocarditis in a Nordic Cohort Study of 23 Million Residents. JAMA Cardiol. 2022;7(6):600-612. Doi:10.1001/jamacardio.2022.0583
52. Husby A, Hansen JV, Fosbøl E, et al. SARS-CoV-2 vaccination and myocarditis or myopericarditis: Population based cohort study. The BMJ. 2021;375. Doi:10.1136/bmj-2021-068665
53. Le Vu S, Bertrand M, Jabagi MJ, et al. Age and sex-specific risks of myocarditis and pericarditis following Covid-19 messenger RNA vaccines. Nat Commun. 2022;13(1). Doi:10.1038/s41467-022-31401-5
54. Bardosh K, Krug A, Jamrozik E, et al. COVID-19 vaccine boosters for young adults: a risk benefit assessment and ethical analysis of mandate policies at universities. J Med Ethics. 2024;50:126-138. Doi:10.1136/medethics-2022-108449
55. Huynh A, Kelton JG, Arnold DM, Daka M, Nazy I. Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia. Nature. 2021;596(7873):565-569. Doi:10.1038/s41586-021-03744-4
56. Huynh A, Arnold DM, Michael J V., et al. Characteristics of VITT antibodies in patients vaccinated with Ad26.COV2.S. Blood Adv. 2023;7(2):246-250. Doi:10.1182/bloodadvances.2022007336
57. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine. 2021;384(22):2092-2101. Doi:10.1056/nejmoa2104840
58. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. New England Journal of Medicine. 2021;384(22):2124-2130. Doi:10.1056/nejmoa2104882
59. Matar RH, Than CA, Nakanishi H, et al. Outcomes of patients with thromboembolic events following coronavirus disease 2019 AstraZeneca vaccination: a systematic review and meta-analysis. Blood Coagulation and Fibrinolysis. 2022;33(2):90-112. Doi:10.1097/MBC.0000000000001113
60. Sutanto H, Soegiarto G. Risk of Thrombosis during and after a SARS-CoV-2 Infection: Pathogenesis, Diagnostic Approach, and Management. Hematol Rep. 2023;15(2):225-243. Doi:10.3390/hematolrep15020024
61. Elias MD, Truong DT, Oster ME, et al. Examination of Adverse Reactions After COVID-19 Vaccination Among Patients With a History of Multisystem Inflammatory Syndrome in Children. JAMA Netw Open. 2023;6(1):e2248987. Doi:10.1001/jamanetworkopen.2022.48987
62. Alarcón-Braga EA, Hernandez-Bustamante EA, Salazar-Valdivia FE, et al. Acceptance towards COVID-19 vaccination in Latin America and the Caribbean: A systematic review and meta-analysis. Travel Med Infect Dis. 2022;49. Doi:10.1016/j.tmaid.2022.102369
63. Galagali PM, Kinikar AA, Kumar VS. Vaccine Hesitancy: Obstacles and Challenges. Curr Pediatr Rep. 2022;10(4):241-248. Doi:10.1007/s40124-022-00278-9
64. Matos CC de SA, Gonçalves BA, Couto MT. Vaccine hesitancy in the global south: Towards a critical perspective on global health. Glob Public Health. 2022;17(6):1087-1098. Doi:10.1080/17441692.2021.1912138
65. Gonçalves BA, de Souza Amorim Matos CC, dos Santos Ferreira JV, Itagyba RF, Moço VR, Couto MT. COVID-19 vaccine hesitancy in Latin America and Africa: a scoping review. Cad Saude Publica. 2023;39(8). Doi:10.1590/0102-311XEN041423
66. Lazarus J V., Wyka K, White TM, et al. A survey of COVID-19 vaccine acceptance across 23 countries in 2022. Nat Med. 2023;29(2):366-375. Doi:10.1038/s41591-022-02185-4
67. O’Leary ST, Opel DJ, Cataldi JR, Hackell JM. Strategies for Improving Vaccine Communication and Uptake. Pediatrics. 2024;153(3). Doi:10.1542/peds.2023-065483
68. Fieselmann J, Annac K, Erdsiek F, Yilmaz-Aslan Y, Brzoska P. What are the reasons for refusing a COVID-19 vaccine? A qualitative analysis of social media in Germany. BMC Public Health. 2022;22(1). Doi:10.1186/s12889-022-13265-y
69. Masters NB, Zhou T, Meng L, et al. Geographic Heterogeneity in Behavioral and Social Drivers of COVID-19 Vaccination. Am J Prev Med. 2022;63(6):883-893. Doi:10.1016/j.amepre.2022.06.016
70. Caycho-Rodríguez T, Valencia PD, Ventura-León J, et al. Design and Cross-Cultural Invariance of the COVID-19 Vaccine Conspiracy Beliefs Scale (COVID-VCBS) in 13 Latin American Countries. Front Public Health. 2022;10. Doi:10.3389/fpubh.2022.908720
71. Chen H, Cao Y, Feng L, Zhao Q, Torres JRV. Understanding the spatial heterogeneity of COVID-19 vaccination uptake in England. BMC Public Health. 2023;23(1). Doi:10.1186/s12889-023-15801-w
72. McCready JL, Nichol B, Steen M, Unsworth J, Comparcini D, Tomietto M. Understanding the barriers and facilitators of vaccine hesitancy towards the COVID-19 vaccine in healthcare workers and healthcare students worldwide: An Umbrella Review. PLoS One. 2023;18(4 April). Doi:10.1371/journal.pone.0280439
73. Argote P, Barham E, Daly SZ, Gerez JE, Marshall J, Pocasangre O. The shot, the message, and the messenger: COVID-19 vaccine acceptance in Latin America. NPJ Vaccines. 2021;6(1). Doi:10.1038/s41541-021-00380-x
74. Wittenauer R, Dolan SB, Njoroge A, et al. Usability and Acceptability of Electronic Immunization Registry Data Entry Workflows From the Health Care Worker Perspective in Siaya, Kenya (Part 3): Pre-Post Study. JMIR Form Res. 2023;7. Doi:10.2196/39383
75. Ávila-Agüero ML, Ospina-Henao S, Pirez MC, et al. Latin American forum on immunization services during the COVID-19 pandemic. Expert Rev Vaccines. 2021;20(3):231-234. Doi:10.1080/14760584.2021.1886930
76. Hernandez-Pineda E, Amaya CA, González-Uribe C, Herrera A, Velasco N. Covid-19 vaccination: a mixed methods analysis of health system resilience in Latin America. Int J Equity Health. 2024;23(1). Doi:10.1186/s12939-023-02073-4
77. Pierola M, Rodriguez M. Migrants in Latin America Disparities in Health Status and in Access to Healthcare. Inter American Development Bank. Published online 2020.
78. Blukacz A, Cabieses B, Mezones-Holguín E, Cardona Arias JM. Healthcare and social needs of international migrants during the COVID-19 pandemic in Latin America: analysis of the Chilean case. Glob Health Promot. 2022;29(3):119-128. Doi:10.1177/17579759211067562
79. Bojorquez I, Cabieses B, Arósquipa C, et al. Migration and health in Latin America during the COVID-19 pandemic and beyond. The Lancet. 2021;397:1243-1245. Doi:10.1016/S0140¬6736(21)00623¬1
80. Perez-Brumer A, Hill D, Andrade-Romo Z, et al. Vaccines for all? A rapid scoping review of COVID-19 vaccine access for Venezuelan migrants in Latin America. J Migr Health. 2021;4. Doi:10.1016/j.jmh.2021.100072
81. Hill D, Adams E, Andrade-Romo Z, Solari K, Santisteban AS, Perez-Brumer A. Access to COVID-19 vaccination for displaced Venezuelans in Latin America: a rapid scoping review. Lancet Glob Health. 2022;10:S19. Doi:10.1016/s2214-109x(22)00148-6
82. Velez C. COVID-19 and Vaccination in Latin America and the Caribbean. Challenges, Needs and Opportunities.; 2021. www.unesco.org/open-access/terms-use-ccbysa-sp
83. Aya Pastrana N, Agudelo-Londoño S, Franco-Suarez O, et al. Improving COVID-19 vaccine uptake: a message co-design process for a national mHealth intervention in Colombia. Glob Health Action. 2023;16(1). Doi:10.1080/16549716.2023.2242670
84. Ning C, Wang H, Wu J, Chen Q, Pei H, Gao H. The COVID-19 Vaccination and Vaccine Inequity Worldwide: An Empirical Study Based on Global Data. Int J Environ Res Public Health. 2022;19(9). Doi:10.3390/ijerph19095267