Wohlfahrtiimonas chitiniclastica bacteremia: First Documented Case in Morocco and North Africa
Main Article Content
Abstract
Background: Wohlfahrtiimonas chitiniclastica is an emerging pathogen associated with severe infections, predominantly found in compromised individuals and often underestimated due to diagnostic challenges. This case report documents the first recorded instance of Wohlfahrtiimonas chitiniclastica bacteremia in Morocco and North Africa, arising from an infected external fixator.
Case Presentation: A 24-year-old male presented to the emergency department with signs of severe sepsis. He had been previously treated with an external fixator for an open leg fracture. Despite having no significant past medical history or high-risk lifestyle behaviors, he developed rapidly progressing symptoms including cutaneous necrosis and systemic infection markers. Laboratory tests confirmed hyperleukocytosis, elevated C-reactive protein, and raised procalcitonin levels. Blood and tissue cultures identified Wohlfahrtiimonas chitiniclastica, along with Providencia stuartii and Enterococcus faecalis. The patient was treated in the intensive care unit with broad-spectrum antibiotics initially, followed by targeted therapy based on susceptibility profiles, and underwent surgical debridement of the infection site.
Discussion: The identification of Wohlfahrtiimonas chitiniclastica in this case marks an important development in its epidemiological profile. Once thought to be limited to specific regions and vectors, it is now recognized globally, suggesting a wider ecological presence and varied transmission routes. This case notably links the bacterium’s infections to breaches in skin integrity, like wounds and chronic ulcers, highlighting them as primary infection gateways. The use of MALDI-TOF mass spectrometry was crucial for the swift and precise identification of Wohlfahrtiimonas chitiniclastica, proving more effective than traditional biochemical methods. Additionally, 16S rRNA gene sequencing offered valuable insights into the organism's taxonomy and resistance patterns, underscoring the critical role of these advanced diagnostics in modern clinical microbiology. Despite the bacterium's broad susceptibility to antibiotics, vigilance is crucial due to the potential for emerging resistance. This risk is heightened by antibiotic use in chronic wound management, emphasizing the need for continual surveillance and rigorous antibiotic stewardship to prevent therapeutic failures and resistance proliferation.
Conclusion: This case highlights Wohlfahrtiimonas chitiniclastica's worldwide distribution and its link to compromised skin integrity. Advanced diagnostics like MALDI-TOF MS and 16S rRNA sequencing proved crucial in identifying this pathogen. The potential for antibiotic resistance necessitates ongoing surveillance and prudent management to control infections and curb resistance. This case reinforces the need to include W. chitiniclastica in differential diagnoses, especially in cases involving skin breaches.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Schröttner P, Rudolph Ww, Damme U, Lotz C, Jacobs E, Gunzer F. Wohlfahrtiimonas chitiniclastica: current insights into an emerging human pathogen. Epidemiol Infect. 2017;145(7):1292-1303. Doi:10.1017/S0950268816003411
3. Armougom F. Exploring Microbial Diversity Using 16S rRNA High-Throughput Methods. J Comput Sci Syst Biol. 2009;02(01). Doi:10.4172/jcsb.1000019
4. Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. Doi:10.1093/nar/gks808
5. Timperio AM, Gorrasi S, Zolla L, Fenice M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLOS ONE. 2017;12(7):e0181860. Doi:10.1371/journal.pone.0181860
6. Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates. Front Microbiol. 2018;9:1294. Doi:10.3389/fmicb.2018.01294
7. Fenwick AJ, Arora V, Ribes JA. Wohlfahrtiimonas chitiniclastica: Two Clinical Cases and a Review of the Literature. Clinical Microbiology Newsletter. 2019;41(4):33-38. Doi:10.1016/j.clinmicnews.2019.01.006
8. Chavez JA, Alexander AJ, Balada-Llasat JM, Pancholi P. A case of Wohlfahrtiimonas chitiniclastica bacteremia in continental United States. JMM Case Reports. 2017;4(12). Doi:10.1099/jmmcr.0.005134
9. Hall MJR, Testa JM, Smith L, et al. Molecular genetic analysis of populations of Wohlfahrt’s wound myiasis fly, Wohlfahrtia magnifica , in outbreak populations from Greece and Morocco. Medical Vet Entomology. 2009;23(s1):72-79. Doi:10.1111/j.1365-2915.2009.00780.x
10. Farkas R, Hall MJR, Bouzagou AK, Lhor Y, Khallaayoune K. Traumatic myiasis in dogs caused by Wohlfahrtia magnifica and its importance in the epidemiology of wohlfahrtiosis of livestock. Medical Vet Entomology. 2009;23(s1):80-85. Doi:10.1111/j.1365-2915.2008.00772.x
11. Robbins K, Khachemoune A. Cutaneous myiasis: a review of the common types of myiasis. International Journal of Dermatology. 2010;49(10):1092-1098. Doi:10.1111/j.1365-4632.2010.04577.x
12. Maleki-Ravasan N, Ahmadi N, Soroushzadeh Z, Raz AA, Zakeri S, Dinparast Djadid N. New Insights Into Culturable and Unculturable Bacteria Across the Life History of Medicinal Maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Front Microbiol. 2020;11:505. Doi:10.3389/fmicb.2020.00505
13. Wang Y, Li LL, Wang JF, et al. Development of the green bottle fly Lucilia illustris at constant temperatures. Forensic Sci Int. 2016;267:136-144. Doi:10.1016/j.forsciint.2016.07.019
14. Iancu L, Necula-Petrareanu G, Purcarea C. Potential bacterial biomarkers for insect colonization in forensic cases: preliminary quantitative data on Wohlfahrtiimonas chitiniclastica and Ignatzschineria indica dynamics. Sci Rep. 2020;10(1):8497. Doi:10.1038/s41598-020-65471-6
15. Cao XM, Chen T, Xu LZ, et al. Complete Genome Sequence of Wohlfahrtiimonas chitiniclastica Strain SH04, Isolated from Chrysomya megacephala Collected from Pudong International Airport in China. Genome Announc. 2013;1(2):e00119-13. Doi:10.1128/genomeA.00119-13
16. Gabre R, Adham F, Chi H. Life table of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae). Acta Oecologica-international Journal of Ecology - ACTA OECOL. 2005;27. Doi:10.1016/j.actao.2004.12.002
17. Gupta AK, Nayduch D, Verma P, et al. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiol Ecol. 2012;79(3):581-593. Doi:10.1111/j.1574-6941.2011.01248.x
18. Rebaudet S, Genot S, Renvoise A, Fournier PE, Stein A. Wohlfahrtiimonas chitiniclastica Bacteremia in Homeless Woman. Emerg Infect Dis. 2009;15(6):985-987. Doi:10.3201/eid1506.080232
19. De Dios A, Jacob S, Tayal A, Fisher MA, Dingle TC, Hamula CL. First Report of Wohlfahrtiimonaschitiniclastica Isolation from a Patient with Cellulitis in the United States. Munson E, ed. J Clin Microbiol. 2015;53(12):3942-3944. Doi:10.1128/JCM.01534-15
20. Campisi L, Mahobia N, Clayton JJ. Wohlfahrtiimonas chitiniclastica Bacteremia Associated with Myiasis, United Kingdom. Emerg Infect Dis. 2015;21(6):1068-1069. Doi:10.3201/eid2106.140007
21. Dovjak P, Kroißenbrunner M, Iglseder B. Myiasis absent Wohlfahrtiimonas chitiniclastica bacteremia in a lung cancer patient: a case report. Eur J Med Res. 2021;26:101. Doi:10.1186/s40001-021-00576-w
22. Kõljalg S, Telling K, Huik K, et al. First report of Wohlfahrtiimonas chitiniclastica from soft tissue and bone infection at an unusually high northern latitude. Folia Microbiol. 2015;60(2):155-158. Doi:10.1007/s12223-014-0355-x
23. Hladík M, Lipovy B, Kaloudova Y, et al. Human Infections by Wohlfahrtiimonas chitiniclastica: A Mini-Review and the First Report of a Burn Wound Infection after Accidental Myiasis in Central Europe. Microorganisms. 2021;9(9):1934. Doi:10.3390/microorganisms9091934
24. Kopf A, Bunk B, Coldewey SM, Gunzer F, Riedel T, Schröttner P. Identification and Antibiotic Profiling of Wohlfahrtiimonas chitiniclastica, an Underestimated Human Pathogen. Front Microbiol. 2021;12:712775. Doi:10.3389/fmicb.2021.712775
25. De Smet D, Goegebuer T, Ho E, Vandenbroucke M, Lemmens A. First case of Wohlfahrtiimonas chitiniclastica isolation from a patient with a foot ulcer infection in Belgium. Acta Clinica Belgica. 2023;78(3):245-247. Doi:10.1080/17843286.2022.2090770
26. Almuzara MN, Palombarani S, Tuduri A, et al. First Case of Fulminant Sepsis Due to Wohlfahrtiimonas chitiniclastica▿. J Clin Microbiol. 2011;49(6):2333-2335. Doi:10.1128/JCM.00001-11
27. Hoffman R, Fortuin F, Newton-Foot M, Singh S. First report of Wohlfahrtiimonas chitiniclastica bacteraemia in South Africa. South African Medical Journal. 2016;106(11):1062. Doi:10.7196/SAMJ.2016.v106i11.11449
28. Md Noor S, Zuraina N, Ahmad F, Rahman Z. Fatal Wohlfahrtiimonas chitiniclastica Bacteremia in an Immunocompromised Patient. Clinical Microbiology Newsletter. 2017;39. Doi:10.1016/j.clinmicnews.2017.07.003
29. Leeolou MC, Perrault DP, Sivaraj D, et al. A rare case of Wohlfahrtiimonas chitiniclastica infection in California. JAAD Case Rep. 2021;17:55-57. Doi:10.1016/j.jdcr.2021.09.022
30. Nogi M, Bankowski MJ, Pien FD. Wohlfahrtiimonas chitiniclastica Infections in 2 Elderly Patients, Hawaii, USA. Emerg Infect Dis. 2016;22(3):567-568. Doi:10.3201/eid2203.151701
31. Ahmad Y, Gaston DC, Gray J, et al. The Brief Case: The Fly Who Cried Wohlf. J Clin Microbiol. 2022;60(6):e0107321. Doi:10.1128/jcm.01073-21
32. Snyder S, Singh P, Goldman J. Emerging pathogens: A case of Wohlfahrtiimonas chitiniclastica and Ignatzschineria indica bacteremia. IDCases. 2020;19:e00723. Doi:10.1016/j.idcr.2020.e00723
33. Lysaght TB, Wooster ME, Jenkins PC, Koniaris LG. Myiasis-induced sepsis: a rare case report of Wohlfahrtiimonas chitiniclastica and Ignatzschineria indica bacteremia in the continental United States. Medicine (Baltimore). 2018;97(52):e13627. Doi:10.1097/MD.0000000000013627
34. Sanyal SK, Mou TJ, Chakrabarty RP, Hoque S, Hossain MA, Sultana M. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express. 2016;6(1):21. Doi:10.1186/s13568-016-0193-0
35. Anjaria P, Koringa P, Bhavsar P, et al. Exploring the Hidden Microbial World of Market Chicken Meat: A Culture-Independent Analysis of Surface Microbiota. Published online April 11, 2023. Doi:10.2139/ssrn.4412769
36. Sami A. The Sudabiome: Oral and Gut Microbiome Parameters of the Sudanese Population Including Dietary and Cultural [Toombak] Metagenomics.; 2022. https://hdl.handle.net/10468/14479
37. Kopf A, Bunk B, Riedel T, Schröttner P. The zoonotic pathogen Wohlfahrtiimonas chitiniclastica – current findings from a clinical and genomic perspective. BMC Microbiol. 2024;24(1):3. Doi:10.1186/s12866-023-03139-7
38. Bonwitt JH, Tran M, Dykstra EA, et al. Fly Reservoir Associated with Wohlfahrtiimonas Bacteremia in a Human. Emerg Infect Dis. 2018;24(2):370-373. Doi:10.3201/eid2402.170913
39. Kalan LR, Brennan MB. The role of the microbiome in nonhealing diabetic wounds. Ann N Y Acad Sci. 2019;1435(1):79-92. Doi:10.1111/nyas.13926
40. Loesche M, Gardner SE, Kalan L, et al. Temporal Stability in Chronic Wound Microbiota Is Associated With Poor Healing. J Invest Dermatol. 2017;137(1):237-244. Doi:10.1016/j.jid.2016.08.009
41. Sune D, Rydberg H, Augustinsson ÅN, Serrander L, Jungeström MB. Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. J Microbiol Methods. 2020;170:105854. Doi:10.1016/j.mimet.2020.105854
42. Bueide P, Hunt J, Bande D, Guerrero DM. Maggot Wound Therapy Associated with Wohlfahrtiimonas chitiniclastica Blood Infection. Cureus. 2021;13(1):e12471. Doi:10.7759/cureus.12471
43. Guan J, Zhou W, Guo J, et al. A Wohlfahrtiimonas chitiniclastica with a novel type of blaVEB–1-carrying plasmid isolated from a zebra in China. Front Microbiol. 2023;14. Doi:10.3389/fmicb.2023.1276314
44. Zhang S, Cai Y, Meng C, et al. The role of the microbiome in diabetes mellitus. Diabetes Research and Clinical Practice. 2021;172. Doi:10.1016/j.diabres.2020.108645
45. Byarugaba DK, Erima B, Wokorach G, et al. Genome Sequence Analysis of a Wohlfahrtiimonas chitiniclastica Strain Isolated from a Septic Wound of a Hospitalized Patient in Uganda. Microbiol Resour Announc. 12(4):e00840-22. Doi:10.1128/mra.00840-22
46. Sugumar M, Kumar KM, Manoharan A, Anbarasu A, Ramaiah S. Detection of OXA-1 β-lactamase gene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. PLoS One. 2014;9(3):e91800. Doi:10.1371/journal.pone.0091800
47. Yum S, Xu Y, Piao S, et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol. 2009;387(5):1286-1297. Doi:10.1016/j.jmb.2009.02.048