An anti-inflammatory agent, 2-Hydroxyisocaproic Acid, prevents Del-1 fragmentation in vitro
Main Article Content
Abstract
Inflammation, a critical aspect of the immune system's defense and recovery processes, manifests in two primary forms: acute and chronic. Understanding and controlling these responses are vital for managing various inflammatory conditions. 2-Hydroxyisocaproic acid is a physiological substance and the 2-hydroxy-analogue of the essential amino acid leucine. This research focuses on the interaction of 2-Hydroxyisocaproic acid with key inflammatory mediators, matrix metalloproteinase 8, and Developmental Endothelial Locus 1. Matrix metalloproteinase 8 plays a significant role in the inflammatory process. Developmental Endothelial Locus 1 acts as a crucial immunomodulator, maintaining tissue homeostasis. Our findings reveal that 2-Hydroxyisocaproic acid inhibits the fragmentation of Developmental Endothelial Locus 1 by dose-dependently modulating and reducing the matrix metalloproteinase 8 activity. Notably, 2-Hydroxyisocaproic acid’s reversible inhibition of matrix metalloproteinase 8 does not eventually involve covalent bonding, positioning it as an enzyme modulator or down regulator rather than a direct inhibitor. This property of active matrix metalloproteinase 8 reduction by 2-Hydroxyisocaproic acid opens new avenues for therapeutic intervention, particularly in managing excessive inflammatory responses, such as the "cytokine storm" observed in lung tissue inflammation or arthritic joints like in osteoarthritis.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Fritsch J, Abreu MT. The Microbiota and the Immune Response: What Is the Chicken and What Is the Egg? Gastrointest Endosc Clin N Am. Jul 2019;29(3):381-393. Doi:10.1016/j.giec.2019.02.005
3. Hajishengallis G, Chavakis T. DEL-1-Regulated Immune Plasticity and Inflammatory Disorders. Trends Mol Med. May 2019;25(5):444-459. Doi:10.1016/j.molmed.2019.02.010
4. Yang N, Baban B, Isales CM, Shi X-M. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism. The FASEB Journal. Sep 2015;29(9):3954-3963. Doi:10.1096/fj.15-273664
5. Maekawa T, Hosur K, Abe T, et al. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3beta-C/EBPbeta pathway. Nat Commun. Sep 16 2015;6:8272. Doi:10.1038/ncomms9272
6. Hajishengallis G, Chavakis T. DEL-1: a potential therapeutic target in inflammatory and autoimmune disease? Expert Rev Clin Immunol. Jun 2021;17(6):549-552. Doi:10.1080/1744666X.2021.1915771
7. Choi EY, Chavakis E, Czabanka MA, et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science. Nov 14 2008;322(5904):1101-4. Doi:10.1126/science.1165218
8. Mitroulis I, Kang YY, Gahmberg CG, et al. Developmental endothelial locus-1 attenuates complement-dependent phagocytosis through inhibition of Mac-1-integrin. Thromb Haemost. May 5 2014;111(5):1004-6. Doi:10.1160/TH13-09-0794
9. Karila T, Tervahartiala T, Cohen B, Sorsa T. The collagenases: are they tractable targets for preventing cartilage destruction in osteoarthritis? Expert Opin Ther Targets. Feb 2 2022:1-13. Doi:10.1080/14728222.2022.2035362
10. Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA. Osteoarthritic lesions. Involvement of three different collagenases. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. Nov 1997;40(11):2065-2074. Doi:10.1002/art.1780401120
11. Hanemaaijer R, Sorsa T, Konttinen YT, et al. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells regulation by tumor necrosis factor-α and doxycycline. Journal of Biological Chemistry. Dec 12 1997;272(50):31504-31509. Doi:10.1074/jbc.272.50.31504
12. Takayama Y. Studies on Amino-Acids and Related Compounds. Part iv. Electrolytic Reactions of Leucic Acid. Bulletin of the Chemical Society of Japan. 1933;8(6):173-178.
13. Hoffer LJ, Taveroff A, Robitaille L, Mamer OA, Reimer ML. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans. J Nutr. Sep 1993;123(9):1513-21. Doi:10.1093/jn/123.9.1513
14. Holecek M. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition. Feb 2002;18(2):130-3. Doi:10.1016/s0899-9007(01)00767-5
15. Mero AA, Ojala T, Hulmi JJ, Puurtinen R, Karila TA, Seppala T. Effects of alfa-hydroxy-isocaproic acid on body composition, DOMS and performance in athletes. J Int Soc Sports Nutr. 2010;7:1. Doi:1550-2783-7-1 [pii] 10.1186/1550-2783-7-1
16. Ojala T, Wilson JM, Hulmi JJ, Karila T, Seppälä TA, Mero AA. α-Hydroxy-Isocaproic Acid (HICA)—Effects on Body Composition, Muscle Soreness and Athletic Performance. Nutrition and Enhanced Sports Performance. Elsevier; 2013:213-216.
17. Hietala P, Karila TAM, Seppälä TA, Tähtivuori K, inventors; Nutrient supplement and use of the same. Finland patent application PCT/FI2005/050365. 2005.
18. Kurling S, Kankaanpaa A, Ellermaa S, Karila T, Seppala T. The effect of sub-chronic nandrolone decanoate treatment on dopaminergic and serotonergic neuronal systems in the brains of rats. Brain Res. May 17 2005;1044(1):67-75. Doi:10.1016/j.brainres.2005.02.071
19. Smoczer C, Park YK, Herrington JB, et al. A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation. Dentistry Journal. 2023;11(12):270. Doi:10.3390/dj11120270
20. Selis D, Pande Y, Smoczer C, et al. Cytotoxicity and Genotoxicity of a New Intracanal Medicament, 2-hydroxyisocaproic Acid-An In Vitro Study. J Endod. May 2019;45(5):578-583. Doi:10.1016/j.joen.2019.01.012
21. Lääkelaitos Farmakologian osasto Klnro 098/98 (1998).
22. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. Aug 2012;51(2): 249-57. Doi:10.1016/j.bone.2012.02.012
23. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. Apr 2013;5(2):77-94. Doi:10.1177/1759720X12467868
24. Nieminen MT, Hernandez M, Novak-Frazer L, et al. DL-2-hydroxyisocaproic acid attenuates inflammatory responses in a murine Candida albicans biofilm model. Clin Vaccine Immunol. Sep 2014;21(9):1240-1245. Doi:10.1128/CVI.00339-14
25. Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis. Feb 2001;60(2):91-7. Doi:10.1136/ard.60.2.91
26. DeCarlo Jr AA. Matrix metalloproteinase activation and induction in keratinocytes by a purified thiol-proteinase from Porphyromonas gingivalis. The University of Alabama at Birmingham; 1994.
27. Sorsa T, Salo T, Koivunen E, et al. Activation of type IV procollagenases by human tumor-associated trypsin-2. J Biol Chem. Aug 22 1997;272(34):21067-74. Doi:10.1074/jbc.272.34.21067
28. Tervahartiala T, Ingman T, Sorsa T, Ding Y, Kangaspunta P, Konttinen YT. Proteolytic enzymes as indicators of periodontal health in gingival crevicular fluid of patients with Sjogren's syndrome. Eur J Oral Sci. Feb 1995;103(1):11-6. Doi:10.1111/j.1600-0722.1995.tb00004.x
29. Kuula H, Salo T, Pirila E, et al. Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect Immun. Feb 2009;77(2):850-9. Doi:10.1128/IAI.00873-08
30. Djuric T, Zivkovic M. Overview of MMP biology and gene associations in human diseases. Role Matrix Met Hum Body Pathol. 2017;1:3-33. Doi:http://dx.doi.org/10.5772/intechopen.70265
31. Sorsa T, Golub LM. Is the excessive inhibition of matrix metalloproteinases (MMPs) by potent synthetic MMP inhibitors (MMPIs) desirable in periodontitis and other inflammatory diseases? That is: 'Leaky' MMPIs vs excessively efficient drugs. Oral Dis. Nov 2005;11(6):408-9. Doi:10.1111/j.1601-0825.2005.01160.x
32. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci U S A. Feb 14 2012;109(7):2625-9. Doi:10.1073/pnas.1114410109
33. Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. Dec 1980;26(13):1839-46. Doi:10.1093/clinchem/26.13.1839
34. Ward ME, Politzer IR, Laseter JL, Alam SQ. Gas chromatographic mass spectrometric evaluation of free organic acids in human saliva. Biomed Mass Spectrom. Apr 1976;3(2):77-80. Doi:10.1002/bms.1200030207
35. Jakobs C, Sweetman L, Nyhan WL. Hydroxy acid metabolites of branched-chain amino acids in amniotic fluid. Clin Chim Acta. Jul 16 1984;140(2):157-66. Doi:10.1016/0009-8981(84)90340-1
36. Liebich HM, Först C. Hydroxycarboxylic and oxocarboxylic acids in urine: products from branched-chain amino acid degradation and from ketogenesis. Journal of Chromatography B: Biomedical Sciences and Applications. Aug 10 1984;309(2):225-242. Doi:10.1016/0378-4347(84)80031-6
37. Mamer OA, Laschic NS, Scriver CR. Stable isotope dilution assay for branched chain alpha-hydroxy-and alpha-ketoacids: serum concentrations for normal children. Biomed Environ Mass Spectrom. Oct 1986;13(10):553-8. Doi:10.1002/bms.1200131007
38. Ehling S, Reddy TM. Direct analysis of leucine and its metabolites β-hydroxy-β-methylbutyric acid, α-ketoisocaproic acid, and α-hydroxyisocaproic acid in human breast milk by liquid chromatography–mass spectrometry. Journal of agricultural and food chemistry. Sep 2 2015;63(34):7567-7573. Doi:10.1021/acs.jafc.5b02563
39. Yamamoto A. Flavors of sake. II. Separation and identification of a hydroxycarbolic acid. Nippon Nogeikagaku Kaishi. 1961;35:619.
40. Van Wyk CJ, Kepner RE, Webb AD. Some Volatile Components of Vitis Vinifera Variety White Riesling. 2. Organic Acids Extracted from Wine. Journal of Food Science. 2006;32(6):664-668. Doi:10.1111/j.1365-2621.1967.tb00859.x
41. Begemann WJ, Harkes PD, inventors; Enhancing a fresh cheese flavor in foods. U.S. patent application US 73-351044 19730413. CAN 83:26537 AN 1975:426537. 1974a.
42. Begemann WJ, Harkes PD, inventors; Process for enhancing a fresh cheese flavour in foods U.S. patent US3853996. 1974b.
43. Smit BA, Engels WJ, Wouters JT, Smit G. Diversity of L-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal. Appl Microbiol Biotechnol. Apr 2004;64(3):396-402. Doi:10.1007/s00253-003-1447-8
44. Ehling S, Reddy TM. Investigation of the presence of beta-hydroxy-beta-methylbutyric acid and alpha-hydroxyisocaproic acid in bovine whole milk and fermented dairy products by a validated liquid chromatography-mass spectrometry method. J Agric Food Chem. Feb 19 2014;62(7):1506-11. Doi:10.1021/jf500026s
45. Hietala PK, Westermarck HW, Jaarma M. Identification of antimicrobial alpha-hydroxyacids in Lactobacillus plantarum-fermented animal protein. Nutr Metab. 1979;23(3):227-34. Doi:10.1159/000176260
46. Westermarck HW, Hietala P, Jaarma M, Sorsa T, Vaara M, inventors; Exracta Oy, assignee. Use of alpha-hydroxy acids in the manufacture of a medicament for the treatment of inflammation. patent application PCT/FI96/00363. 1997.
47. Mortimore GE, Pösö AR, Kadowaki M, Wert JJ, Jr. Multiphasic control of hepatic protein degradation by regulatory amino acids. General features and hormonal modulation. J Biol Chem. Dec 5 1987;262(34):16322-7. Doi:https://doi.org/10.1016/S0021-9258(18)49257-5
48. Sakko M, Karila T, Tervahartiala T, et al. 2-hydroksi-isokapronihapon (HICAn) antiseptiset ominaisuudet. Suomen Hammaslääkärilehti. 15.9.2023 2023;(10/23):28-35.
49. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. Aug 2004;4(8):617-29. Doi:10.1038/nri1418
50. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463-516. Doi:10.1146/annurev.cellbio.17.1.463
51. McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. Aug 15 2002;100(4):1160-7. Doi:10.1182/blood.V100.4.1160.h81602001160_1160_1167
52. Van Lint P, Libert C. Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev. Aug 2006;17(4):217-23. Doi:10.1016/j.cytogfr.2006.04.001
53. Knäuper V, Triebel S, Reinke H, Tschesche H. Inactivation of human plasma C1-inhibitor by human PMN leucocyte matrix metalloproteinases. FEBS Lett. Sep 23 1991;290(1-2):99-102. Doi:10.1016/0014-5793(91)81235-z
54. Van den Steen PE, Husson SJ, Proost P, Van Damme J, Opdenakker G. Carboxyterminal cleavage of the chemokines MIG and IP-10 by gelatinase B and neutrophil collagenase. Biochem Biophys Res Commun. Oct 24 2003;310(3):889-96. Doi:10.1016/j.bbrc.2003.09.098
55. Laxton RC, Hu Y, Duchene J, et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res. Oct 23 2009;105(9):921-9. Doi:10.1161/CIRCRESAHA.109.200279
56. Lauhio A, Farkkila E, Pietilainen KH, et al. Association of MMP-8 with obesity, smoking and insulin resistance. Eur J Clin Invest. Sep 2016;46(9):757-65. Doi:10.1111/eci.12649
57. Sohn DH, Sokolove J, Sharpe O, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. Jan 8 2012;14(1):R7. Doi:10.1186/ar3555
58. Kim CF, Moalem-Taylor G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain. Mar 2011;12(3):370-83. Doi:10.1016/j.jpain.2010.08.003
59. Qu N, Xu M, Mizoguchi I, et al. Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin Dev Immunol. 2013;2013:968549. Doi:10.1155/2013/968549
60. Pulsatelli L, Addimanda O, Brusi V, Pavloska B, Meliconi R. New findings in osteoarthritis pathogenesis: therapeutic implications. Ther Adv Chronic Dis. Jan 2013;4(1):23-43. Doi:10.1177/2040622312462734
61. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. Feb 2016;46(2):440-5. Doi:10.1002/eji.201545910
62. Wang Z, Tran MC, Bhatia NJ, et al. Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis. PLoS One. 2016;11(8):e0160684. Doi:10.1371/journal.pone.0160684
63. Wang Z, Boyko T, Tran MC, et al. DEL1 protects against chondrocyte apoptosis through integrin binding. Research Support, Non-U.S. Gov't. J Surg Res. Nov 2018;231:1-9.(doi):10.1016/j.jss.2018.04.066. Epub 2018 May 30. *Apoptosis *Chondrocytes *del1 *Integrin *Osteoarthritis.
64. Wang H, Li X, Kajikawa T, et al. Stromal cell–derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis. The Journal of Clinical Investigation. Oct 1 2021;131(19)Doi:10.1172/JCI150578
65. Foers AD, Dagley LF, Chatfield S, et al. Proteomic analysis of extracellular vesicles reveals an immunogenic cargo in rheumatoid arthritis synovial fluid. Clin Transl Immunology. 2020;9(11):e1185. Doi:10.1002/cti2.1185
66. Choi EY. Inhibition of leukocyte adhesion by developmental endothelial locus-1 (del-1). Immune Netw. Oct 2009;9(5):153-7. Doi:10.4110/in.2009.9.5.153
67. Lee S-H, Kim D-Y, Kang Y-Y, et al. Developmental endothelial locus-1 inhibits MIF production through suppression of NF-κB in macrophages. International journal of molecular medicine. 2014;33(4):919-924. Doi:10.3892/ijmm.2014.1645
68. Baugh JA, Chitnis S, Donnelly SC, et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun. May 2002;3(3):170-6. Doi:10.1038/sj.gene.6363867
69. Yuh D-Y, Maekawa T, Li X, et al. The secreted protein DEL-1 activates a β3 integrin–FAK–ERK1/2–RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. Journal of Biological Chemistry. May 22 2020;295(21):7261-7273. Doi:10.1074/jbc.RA120.013024
70. Pfister BE, Aydelotte MB, Burkhart W, Kuettner KE, Schmid TM. Del1: a new protein in the superficial layer of articular cartilage. Biochem Biophys Res Commun. Aug 17 2001;286(2):268-73. Doi:10.1006/bbrc.2001.5377
71. Sharif M, Elson CJ, Dieppe PA, Kirwan JR. Elevated serum C-reactive protein levels in osteoarthritis. Br J Rheumatol. Jan 1997;36(1):140-1. Doi:10.1093/rheumatology/36.1.140
72. Spector TD, Hart DJ, Nandra D, et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. Apr 1997;40(4):723-7. Doi:10.1002/art.1780400419
73. Sowers M, Jannausch M, Stein E, Jamadar D, Hochberg M, Lachance L. C-reactive protein as a biomarker of emergent osteoarthritis. Osteoarthritis Cartilage. Aug 2002;10(8):595-601. Doi:10.1053/joca.2002.0800
74. Loeser RF. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. May 2006;54(5):1357-60. Doi:10.1002/art.21813
75. Haraoui B, Pelletier JP, Cloutier JM, Faure MP, Martel-Pelletier J. Synovial membrane histology and immunopathology in rheumatoid arthritis and osteoarthritis. In vivo effects of antirheumatic drugs. Arthritis Rheum. Feb 1991;34(2):153-63. Doi:10.1002/art.1780340205
76. Robinson WH, Lepus CM, Wang Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. Oct 2016;12(10):580-92. Doi:10.1038/nrrheum.2016.136
77. Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. Feb 2 2017;19(1):18. Doi:10.1186/s13075-017-1229-9
78. Pearle AD, Scanzello CR, George S, et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage. May 2007;15(5):516-23. Doi:10.1016/j.joca.2006.10.010
79. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. Sep 2005;64(9):1263-7. Doi:10.1136/ard.2004.025270
80. Mohamed SA, Neseem N, Metwally S, Farag S. IL-17 in primary knee osteoarthritis and its relation with severity of the disease. Int J Clin Rheumatol. 2018;13(6):364-9.
81. 81. Abdel-Naby HM, El-Tawab SS, Rizk MM, Aboeladl NA. Is interleukin-17 implicated in early knee osteoarthritis pathogenesis as in rheumatoid arthritis? Egyptian Rheumatology and Rehabilitation. 2022/05/16 2022;49(1):29. Doi:10.1186/s43166-022-00130-4
82. Molnar V, Matisic V, Kodvanj I, et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci. Aug 26 2021;22(17) Doi:10.3390/ijms22179208
83. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. Apr 2 2018;128(4):1229-1237. Doi:10.1172/JCI95147
84. Barenius B, Ponzer S, Shalabi A, Bujak R, Norlen L, Eriksson K. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med. May 2014;42(5):1049-57. Doi:10.1177/0363546514526139
85. Rosenthal AK, Gohr CM, Ninomiya J, Wakim BT. Proteomic analysis of articular cartilage vesicles from normal and osteoarthritic cartilage. Arthritis Rheum. Feb 2011;63(2):401-11. Doi:10.1002/art.30120