Klotho containing serum protects from ultra-violet A induced damage in vitro
Main Article Content
Abstract
The skin is the largest organ in the body to come into contact with solar UV radiation. The UV-A (UVA) spectrum makes up over 95% of solar-UV radiation energy reaching the Earth’s surface and has been recognized as a significant contributor to skin damage. UVA can penetrate beyond the epidermal skin layer into the dermal layer containing fibroblasts. UVA exposure can induce oxidative DNA damage including 8-oxo-G adducts, as well as single-stranded breaks and apurinic -sites believed to accelerate photo-aging. We investigated the protective impact of klotho protein after UVA exposure. Overexpression of the klotho protein was previously shown to extend lifespan in transgenic mice and give them a youthful appearance compared to litter mates. This rejuvenation impact of klotho was demonstrated to be, in-part, due to the protein inducing protective cellular response pathways including principal antioxidants proteins superoxide dismutase and catalase. Using human fibroblast cells, we measure the ability of klotho to reduce endogenous as well as UVA-associated DNA damage. We report that exposure of fibroblast cells to klotho containing serum reduces the amount of measurable endogenous DNA damage when used at the optimal concentration. Further, using a novel high through-put UVA platform we demonstrate that pre-incubation with 1% klotho containing media significantly reduces the amount of oxidative DNA damage that is induced, post-UVA exposure. Future research will evaluate whether klotho containing media is also protective in other skin cell types and more complex 3D models.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Lee DJW, Hodzic Kuerec A, Maier AB. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. Lancet Healthy Longev. Feb 2024;5(2):e152-e162. doi:10.1016/S2666-7568(23)00258-1
3. Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr. Nov 2023;14(6):1416-1435. doi:10.1016/j.advnut.2023.08.008
4. de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. Dec 26 2019;381(26): 2541-2551. doi:10.1056/NEJMra1905136
5. Delcroix V, Mauduit O, Tessier N, et al. The Role of the Anti-Aging Protein Klotho in IGF-1 Signaling and Reticular Calcium Leak: Impact on the Chemosensitivity of Dedifferentiated Liposarcomas. LID - 10.3390/cancers10110439 [doi] LID - 439. (2072-6694 (Print))
6. Ravikumar P, Ye J, Zhang J, et al. alpha-Klotho protects against oxidative damage in pulmonary epithelia. Am J Physiol Lung Cell Mol Physiol. Oct 1 2014;307(7):L566-75. doi:10.1152/ajplung.00306.2013
7. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science. Sep 16 2005;309(5742):1829-33. doi:10.1126/science.1112766
8. Masuda H, Chikuda H, Suga T, Kawaguchi H, Kuro-o M. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev. Dec 2005;126(12):1274-83. doi:10.1016/j.mad.2005.07.007
9. R HGM. Utilizing the Klotho Protein and Second-Generation Growth Factors for the Treatment of Facial Photoaging: A Clinical Experience with Ten Cases. J Aging Sci. 2022;10(3)1000280. doi:10.35248/2329-8847.22.10.280
10. Sykora P, Witt KL, Revanna P, et al. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep. Feb 9 2018;8(1):2771. doi:10.1038/s41598-018-20995-w
11. Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. Oct 2001;63(1-3):88-102. doi:10.1016/s1011-1344(01)00206-8
12. Karran P, Brem R. Protein oxidation, UVA and human DNA repair. DNA Repair (Amst). Aug 2016;44(1568-7856 (Electronic)):178-185. doi:10.1016/j.dnarep.2016.05.024
13. Rowe LA, Degtyareva N, Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. Oct 15 2008;45(8):1167-77. doi:10.1016/j.freeradbiomed.2008.07.018
14. Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020/01/01/ 2020;18:207-219. doi:10.1016/j.csbj.2019.12.013
15. Barbieri, J.S., Wanat, K.A., & Seykora, J.T. (2014). Skin: Basic Structure and Function.
16. Celleno, L., & Tamburi, F. (2009). Structure and Function of the Skin.
17. Roig-Rosello, E., & Rousselle, P. (2020). The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules, 10.
18. Bernerd F, Passeron T, Castiel I, Marionnet C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. LID - 10.3390/ijms23158243 [doi] LID - 8243. (1422-0067 (Electronic))
19. Zhang, Q., Qiao, S., Yang, C., & Jiang, G. (2022). Nuclear factor-kappa B and effector molecules in photoaging. Cutaneous and Ocular Toxicology, 41, 187 - 193.
20. Gęgotek, A., Biernacki, M., Ambrożewicz, E., Surażyński, A., Wroński, A., & Skrzydlewska, E. (2016). The cross-talk between electrophiles, antioxidant defence and the endocannabinoid system in fibroblasts and keratinocytes after UVA and UVB irradiation. Journal of dermatological science, 81 2, 107-17 .
21. Rees JL. The genetics of sun sensitivity in humans. Am J Hum Genet. Nov 2004;75(5): 739-51. doi:10.1086/425285
22. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. Apr 2015;36(2):174-93. doi:10.1210/er.2013-1079
23. Zeldich, E., Chen, C., Boden, E., Howat, B., Nasse, J.S., Zeldich, D., Lambert, A.G., Yuste, A., Cherry, J.D., Mathias, R., Ma, Q., Lau, N.C., Mckee, A.C., Hatzipetros, T., & Abraham, C.R. (2019). Klotho Is Neuroprotective in the Superoxide Dismutase (SOD1G93A) Mouse Model of ALS. Journal of Molecular Neuroscience, 69, 264 - 285.
24. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018/12/01/ 2019;54 (4):287-293. doi:10.1016/j.ajme.2017.09.001
25. Pudlarz, A.M., Czechowska, E., S Karbownik, M., Ranoszek-Soliwoda, K., Tomaszewska, E., Celichowski, G., Grobelny, J., Chabielska, E., Gromotowicz-Poplawska, A., & Szemraj, J. (2020). The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin. Nanomedicine, 15 1, 23-39 .
26. Martín-Núñez E, Donate-Correa J, Ferri C, et al. Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: a case-control study. (1945-4589 (Electronic))
27. Degaspari S, Tzanno-Martins CB, Fujihara CK, et al. Altered KLOTHO and NF-kappaB-TNF-alpha Signaling Are Correlated with Nephrectomy-Induced Cognitive Impairment in Rats. PLoS One. 2015;10(5):e0125271. doi:10.1371/journal.pone.0125271
28. Landry T, Shookster D, Huang H. Circulating alpha-klotho regulates metabolism via distinct central and peripheral mechanisms. Metabolism. Aug 2021;121(1532-8600 (Electronic)):154819. doi:10.1016/j.metabol.2021.154819
29. Kazemi Fard T, Ahmadi R, Akbari T, et al. Klotho, FOXO1 and cytokines associations in patients with coronary artery disease. Cytokine. May 2021;141:155443. doi:10.1016/j.cyto.2021.155443
30. Lim, S.W., Jin, L., Luo, K., Jin, J., Shin, Y.J., Hong, S.Y., & Yang, C. (2017). Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death & Disease, 8.
31. Zhang, B., Xu, J., Quan, Z., Qian, M., Liu, W., Zheng, W., Yin, F., Du, J., Zhi, Y., & Song, N. (2018). Klotho Protein Protects Human Keratinocytes from UVB-Induced Damage Possibly by Reducing Expression and Nuclear Translocation of NF-κB. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 8583 - 8591.
32. Fan, F., Li, Y., Liu, Y., Shao, L., Yu, J., & Li, Z. (2018). Overexpression of klotho in adipose-derived stem cells protects against UVB-induced photoaging in co-cultured human fibroblasts. Molecular Medicine Reports, 18, 5473 - 5480.
33. Wen, X., Li, S., Zhang, Y., Zhu, L., Xi, X., Zhang, S., & Li, Y. (2022). Recombinant human klotho protects against hydrogen peroxide-mediated injury in human retinal pigment epithelial cells via the PI3K/Akt-Nrf2/HO-1 signaling pathway. Bioengineered, 13, 11767 - 11781.
34. Shen, Y., Yan, Y., Lu, L., Qian, Y., Guan, X., Zhang, L., Qi, Y., Gu, L., & Ding, F. (2018). Klotho ameliorates hydrogen peroxide-induced oxidative injury in TCMK-1 cells. International Urology and Nephrology, 50, 787-798.
35. Ikushima, M., Rakugi, H., Ishikawa, K., Maekawa, Y., Yamamoto, K., Ohta, J., Chihara, Y., Kida, I., & Ogihara, T. (2006). Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochemical and biophysical research communications, 339 3, 827-32 .
36. Guo, Y., Zhuang, X., Huang, Z., Zou, J., Yang, D., Hu, X., Du, Z., Wang, L., & Liao, X. (2018). Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochimica et biophysica acta. Molecular basis of disease, 1864 1, 238-251.
37. Typiak, M., & Piwkowska, A. (2021). Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. International Journal of Molecular Sciences, 22.
38. David, S.S., O'shea, V.L., & Kundu, S. (2007). Base-excision repair of oxidative DNA damage. Nature, 447, 941-950.
39. Kim, Y.J., & Wilson, D.M. (2012). Overview of base excision repair biochemistry. Current molecular pharmacology, 5 1, 3-13.