Review: Ageing, Health and Macroalgae
Main Article Content
Abstract
Maintaining health during ageing has become a major public health initiative as the proportion of the world’s population aged over 65 years has increased markedly. Macroalgae have been incorporated in the diet for generations, especially in East Asia. Nutritional changes to include macroalgae may provide possibilities for interventions to prevent or reverse the hallmarks of ageing. Their potential to assist in healthy ageing relies on their complex composition including carbohydrates, proteins, minerals, vitamins, fibre and secondary metabolites such as phlorotannins, oxylipins and terpenoids. However, most studies are in animal models with few studies examining the responses in humans to long-term intake. Likely mechanisms of action include reversal of chronic inflammation and gut dysbiosis as part of the changes during ageing. There is now a wide range of foods that incorporate macroalgae, including bread, noodles, yogurt, gluten-free products, and meat and seafood products. Key future priorities with macroalgae include increasing the range of species available for human consumption, defining the health benefits in humans and domestic animals, improving accessibility and decreasing the risk of toxicity from pollutants. Further, health may be improved by indirect effects including wastewater remediation, production of bioenergy and biofertilisers, and decreasing methane production by ruminants. These uses also increase knowledge of macroalgal biology, especially the use ofmolecular engineering techniques to increase sustainable macroalgal biomass production.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Urtamo A; Jyväkorpi SK; Strandberg TE. Definitions of successful ageing: A bief review of a multidimensional concept. Acta Biomed 2019;90:359-63. Doi:10.23750/abm.v90i2.8376.
3. Baker MT; Lu P; Parrella JA; Leggette HR. Consumer acceptance toward functional foods: A scoping review. Int J Environ Res Public Health 2022;19:1217. Doi:10.3390/ijerph19031217.
4. Wells ML; Potin P; Craigie JS; Raven JA; Merchant SS, et al. Algae as nutritional and functional food sources: Revisiting our understanding. J Appl Phycol 2017;29:949-82. Doi:10.1007/s10811-016-0974-5.
5. Guo J; Qi M; Chen H; Zhou C; Ruan R, et al. Macroalgae-derived multifunctional bioactive substances: The potential applications for food and pharmaceuticals. Foods 2022;11:3455. Doi:10.3390/foods11213455.
6. Adarshan S; Sree VSS; Muthuramalingam P; Nambiar KS; Sevanan M, et al. Understanding macroalgae: A comprehensive exploration of nutraceutical, pharmaceutical, and omics dimensions. Plants (Basel) 2024;13:113. Doi:10.3390/plants13010113.
7. GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: A comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 2024;403:P1989-2056. Doi:10.1016/S0140-6736(24)00476-8.
8. Australian Institute of Health and Welfare. Older Australians - Demographic Profile; 2023, Available online: https://www.aihw.gov.au/reports/older-people/older-australians/contents/demographic-profile (accessed on 26 April 2024).
9. Australian Institute of Health and Welfare. How long can Australians live?; 2023, Available online: https://www.aihw.gov.au/reports/life-expectancy-deaths/how-long-can-australians-live/summary (accessed on 16 May 2024).
10. Australian Institute of Health and Welfare. Deaths in Australia; 2023, Available online: https://www.aihw.gov.au/reports/life-expectancy-deaths/deaths-in-australia/contents/life-expectancy (accessed on 16 May 2024).
11. Australian Institute of Health and Welfare. Older Australians - Health – status and functioning; 2023, Available online: https://www.aihw.gov.au/reports/older-people/older-australians/contents/health/health-status-and-functioning (accessed on 16 May 2024).
12. World Health Organisation. WHO's work on the UN Decade of Healthy Ageing (2021–2030); 2023, Available online: https://www.who.int/initiatives/decade-of-healthy-ageing (accessed on 26 April 2024).
13. Decade of Healthy Ageing. Launch of the Healthy Ageing Collaborative: Working together to improve the lives of older people, their families, and communities; 2022, Available online: https://www.decadeofhealthyageing.org/find-knowledge/resources/decade-news/detail/launch-of-the-healthy-ageing-collaborative (accessed on 26 April 2024).
14. World Health Organisation. Ageing and Health; 2022, Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 26 April 2024).
15. GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:1160-203.
Doi:10.1016/S0140-6736(20)30977-6.
16. Barakovic Husic J; Melero FJ; Barakovic S; Lameski P; Zdravevski E, et al. Aging at work: A review of recent trends and future directions. Int J Environ Res Public Health 2020;17:7659. Doi:10.3390/ijerph17207659.
17. Bortz J; Guariglia A; Klaric L; Tang D; Ward P, et al. Biological age estimation using circulating blood biomarkers. Commun Biol 2023;6:1089. Doi:10.1038/s42003-023-05456-z.
18. Noroozi R; Ghafouri-Fard S; Pisarek A; Rudnicka J; Spólnicka M, et al. DNA methylation-based age clocks: From age prediction to age reversion. Ageing Res Rev 2021;68:101314. Doi:10.1016/j.arr.2021.101314.
19. Bernabeu E; McCartney DL; Gadd DA; Hillary RF; Lu AT, et al. Refining epigenetic prediction of chronological and biological age. Genome Med 2023;15:12. Doi:10.1186/s13073-023-01161-y.
20. Li Z; Zhang W; Duan Y; Niu Y; Chen Y, et al. Progress in biological age research. Front Public Health 2023;11:1074274. Doi:10.3389/fpubh.2023.1074274.
21. Beyene MB; Visvanathan R; Ahmed M; Benyamin B; Beard JR, et al. Development and validation of an intrinsic capacity score in the UK Biobank study. Maturitas 2024;185:107976. Doi:10.1016/j.maturitas.2024.107976.
22. World Health Organisation. Healthy ageing and functional ability; 2020, Available online: https://www.who.int/news-room/questions-and-answers/item/healthy-ageing-and-functional-ability (accessed on 26 April 2024).
23. Menassa M; Stronks K; Khatami F; Roa Díaz ZM; Espinola OP, et al. Concepts and definitions of healthy ageing: A systematic review and synthesis of theoretical models. eClinicalMedicine 2023;56:101821. Doi:10.1016/j.eclinm.2022.101821.
24. Khalatbari-Soltani S; Si Y; Dominguez M; Scott T; Blyth FM. Worldwide cohort studies to support healthy ageing research: Data availabilities and gaps. Ageing Res Rev 2024;96:102277. Doi:10.1016/j.arr.2024.102277.
25. Xu KQ; Payne CF. A growing divide: Trends in social inequalities in healthy longevity in Australia, 2001–20. Population Studies 2023. Doi:10.1080/00324728.2023.2241429.
26. Granic A; Mendonça N; Hill TR; Jagger C; Stevenson EJ, et al. Nutrition in the very old. Nutrients 2018;10:269. Doi:10.3390/nu10030269.
27. Evans WJ; Guralnik J; Cawthon P; Appleby J; Landi F, et al. Sarcopenia: No consensus, no diagnostic criteria, and no approved indication - How did we get here? Geroscience 2024;46:183-90. Doi:10.1007/s11357-023-01016-9.
28. Bonanad C; Fernández-Olmo R; García-Blas S; Alarcon JA; Díez-Villanueva P, et al. Cardiovascular prevention in elderly patients. J Geriatr Cardiol 2022;19:377-92. Doi:10.11909/j.issn.1671-5411.2022.05.004.
29. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023;402:203-34. Doi:10.1016/S0140-6736(23)01301-6.
30. Wong ND; Sattar N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat Rev Cardiol 2023;20:685-95. Doi:10.1038/s41569-023-00877-z.
31. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377:13-27. Doi:10.1056/NEJMoa1614362.
32. García-Vega D; González-Juanatey JR; Eiras S. Diabesity in elderly cardiovascular disease patients: Mechanisms and regulators. Int J Mol Sci 2022;23:7886. Doi:10.3390/ijms23147886.
33. Pes GM; Dore MP; Tsofliou F; Poulain M. Diet and longevity in the Blue Zones: A set-and-forget issue? Maturitas 2022;164:31-7. Doi:10.1016/j.maturitas.2022.06.004.
34. Willcox DC; Scapagnini G; Willcox BJ. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech Ageing Dev 2014;136-137:148-62. Doi:10.1016/j.mad.2014.01.002.
35. Willcox BJ; Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: Controversies and clinical implications. Curr Opin Clin Nutr Metab Care 2014;17:51-8. Doi:10.1097/MCO.0000000000000019.
36. Mazza E; Ferro Y; Pujia R; Mare R; Maurotti S, et al. Mediterranean diet in healthy aging. J Nutr Health Aging 2021;25:1076-83. Doi:10.1007/s12603-021-1675-6.
37. Yeung SSY; Kwan M; Woo J. Healthy diet for healthy aging. Nutrients 2021;13:4310. Doi:10.3390/nu13124310.
38. Fadnes LT; Celis-Morales C; Økland J-M; Parra-Soto S; Livingstone KM, et al. Life expectancy can increase by up to 10 years following sustained shifts towards healthier diets in the United Kingdom. Nat Food 2023;4:961-5. Doi:10.1038/s43016-023-00868-w.
39. López-Otín C; Blasco MA; Partridge L; Serrano M; Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023;186:243-78. Doi:10.1016/j.cell.2022.11.001.
40. Lindner-Rabl S; Wagner V; Matijevic A; Herzog C; Lampl C, et al. Clinical interventions to improve nutritional care in older adults and patients in primary healthcare - A scoping review of current practices of health care practitioners. Clin Interv Aging 2022;17:1-13. Doi:10.2147/cia.S343307.
41. Le Cosquer G; Vergnolle N; Motta J-P. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024;26:105309. Doi:10.1016/j.micinf.2024.105309.
42. Ling Z; Liu X; Cheng Y; Yan X; Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr 2022;62:3509-34. Doi:10.1080/10408398.2020.1867054.
43. Daily JW; Park S. Sarcopenia is a cause and consequence of metabolic dysregulation in aging humans: Effects of gut dysbiosis, glucose dysregulation, diet and lifestyle. Cells 2022;11:338. Doi:10.3390/cells11030338.
44. Kossowska M; Olejniczak S; Karbowiak M; Mosiej W; Zielińska D, et al. The interplay between gut microbiota and cognitive functioning in the healthy aging population: A systematic review. Nutrients 2024;16:852. Doi:10.3390/nu16060852.
45. Wang XM; Fan L; Meng CC; Wang YJ; Deng LE, et al. Gut microbiota influence frailty syndrome in older adults: Mechanisms and therapeutic strategies. Biogerontology 2024;25:107-29. Doi:10.1007/s10522-023-10082-7.
46. Hoseini Tavassol Z; Ejtahed HS; Atlasi R; Saghafian F; Khalagi K, et al. Alteration in gut microbiota composition of older adults is associated with obesity and its indices: A systematic review. J Nutr Health Aging 2023;27:817-23. Doi:10.1007/s12603-023-1988-8.
47. Xiao Y; Feng Y; Zhao J; Chen W; Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2024. Doi:10.1016/j.jare.2024.03.005.
48. Sproten R; Nohr D; Guseva D. Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: A systematic review of preclinical and clinical findings. Nutr Neurosci 2024. Doi:10.1080/1028415x.2023.2296727.
49. Li X; Li C; Zhang W; Wang Y; Qian P, et al. Inflammation and aging: Signaling pathways and intervention therapies. Sig Transduct Target Ther 2023;8:239. Doi:10.1038/s41392-023-01502-8.
50. Zhang YX; Ou MY; Yang ZH; Sun Y; Li QF, et al. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023;14:1125395. Doi:10.3389/fimmu.2023.1125395.
51. Bi J; Zhang C; Lu C; Mo C; Zeng J, et al. Age-related bone diseases: Role of inflammaging. J Autoimmun 2024;143:103169. Doi:10.1016/j.jaut.2024.103169.
52. Mafra D; Ugochukwu SA; Borges NA; Cardozo L; Stenvinkel P, et al. Food for healthier aging: Power on your plate. Crit Rev Food Sci Nutr 2024;64:603-16. Doi:10.1080/10408398.2022.2107611.
53. Di Giosia P; Stamerra CA; Giorgini P; Jamialahamdi T; Butler AE, et al. The role of nutrition in inflammaging. Ageing Res Rev 2022;77:101596. Doi:10.1016/j.arr.2022.101596.
54. Nelson DR; Mystikou A; Jaiswal A; Rad-Menendez C; Preston MJ, et al. Macroalgal deep genomics illuminate multiple paths to aquatic, photosynthetic multicellularity. Mol Plant 2024;17:747-71. Doi:10.1016/j.molp.2024.03.011.
55. Lawton RJ; de Nys R; Paul NA. Selecting reliable and robust freshwater macroalgae for biomass applications. PLoS ONE 2013;8:e64168. Doi:10.1371/journal.pone.0064168.
56. Shah Z; Badshah SL; Iqbal A; Shah Z; Emwas A-H, et al. Investigation of important biochemical compounds from selected freshwater macroalgae and their role in agriculture. Chem Biol Technol Agric 2022;9:9. Doi:10.1186/s40538-021-00273-0.
57. Khan N; Sudhakar K; Mamat R. Macroalgae farming for sustainable future: Navigating opportunities and driving innovation. Heliyon 2024;10:e28208. Doi:10.1016/j.heliyon.2024.e28208.
58. Rimmer MA; Larson S; Lapong I; Purnomo AH; Pong-Masak PR, et al. Seaweed aquaculture in Indonesia contributes to social and economic aspects of livelihoods and community wellbeing. Sustainability 2021;13:10946. Doi:10.3390/su131910946.
59. Spillias S; Kelly R; Cottrell RS; O’Brien KR; Im R-Y, et al. The empirical evidence for the social-ecological impacts of seaweed farming. PLoS Sustain Transform 2023;2:e0000042. Doi:10.1371/journal.pstr.0000042.
60. Tullberg RM; Nguyen HP; Wang CM. Review of the status and developments in seaweed farming infrastructure. J Mar Sci Eng 2022;10:1447. Doi:10.3390/jmse10101447.
61. Augyte S; Sims NA; Martin K; Van Wychen S; Panczak B, et al. Tropical red macroalgae cultivation with a focus on compositional analysis. Plants 2023;12:3524. Doi:10.3390/plants12203524.
62. Visch W; Layton C; Hurd CL; Macleod C; Wright JT. A strategic review and research roadmap for offshore seaweed aquaculture—A case study from southern Australia. Rev Aquac 2023;15:1467-79. Doi:10.1111/raq.12788.
63. Bhuyan MS. Ecological risks associated with seaweed cultivation and identifying risk minimization approaches. Algal Res 2023;69:102967. Doi:10.1016/j.algal.2022.102967.
64. Løvdal T; Lunestad BT; Myrmel M; Rosnes JT; Skipnes D. Microbiological food safety of seaweeds. Foods 2021;10:2719. Doi:10.3390/foods10112719.
65. Peñalver R; Lorenzo JM; Ros G; Amarowicz R; Pateiro M, et al. Seaweeds as a functional ingredient for a healthy diet. Mar Drugs 2020;18:301. Doi:10.3390/md18060301.
66. Baghel RS; Choudhary B; Pandey S; Pathak PK; Patel MK, et al. Rehashing our insight of seaweeds as a potential source of foods, nutraceuticals, and pharmaceuticals. Foods 2023;12:3642. Doi:10.3390/foods12193642.
67. Dai N; Wang Q; Xu B; Chen H. Remarkable natural biological resource of algae for medical applications. Front Mar Sci 2022;9:912924. Doi:10.3389/fmars.2022.912924.
68. Tavares JO; Cotas J; Valado A; Pereira L. Algae food products as a healthcare solution. Mar Drugs 2023;21:578. Doi:10.3390/md21110578.
69. Magwaza SN; Islam MS. Roles of marine macroalgae or seaweeds and their bioactive compounds in combating overweight, obesity and diabetes: A comprehensive review. Mar Drugs 2023;21:258. Doi:10.3390/md21040258.
70. Wang S; Zhang B; Chang X; Zhao H; Zhang H, et al. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: A review. Crit Rev Food Sci Nutr 2023. Doi:10.1080/10408398.2023.2191135.
71. Li Y; Qin J; Cheng Y; Lv D; Li M, et al. Marine sulfated polysaccharides: Preventive and therapeutic effects on metabolic syndrome: A review. Mar Drugs 2021;19:608. Doi:10.3390/md19110608.
72. Apostolova E; Lukova P; Baldzhieva A; Katsarov P; Nikolova M, et al. Immunomodulatory and anti-inflammatory effects of fucoidan: A review. Polymers (Basel) 2020;12:2338. Doi:10.3390/polym12102338.
73. Rocha CP; Pacheco D; Cotas J; Marques JC; Pereira L, et al. Seaweeds as valuable sources of essential fatty acids for human nutrition. Int J Environ Res Public Health 2021;18:4968. Doi:10.3390/ijerph18094968.
74. Jaworowska A; Murtaza A. Seaweed derived lipids are a potential anti-inflammatory agent: A review. Int J Environ Res Public Health 2022;20:730. Doi:10.3390/ijerph20010730.
75. Gómez-Zorita S; González-Arceo M; Trepiana J; Eseberri I; Fernández-Quintela A, et al. Anti-obesity effects of macroalgae. Nutrients 2020;12:2378. Doi:10.3390/nu12082378.
76. Jayapala HPS; Lim SY. N-3 polyunsaturated fatty acids and gut microbiota. Comb Chem High Throughput Screen 2023;26:892-905. Doi:10.2174/1386207325666220701121025.
77. Jiang W; Zhao Y; Wu X; Du Y; Zhou W. Health inequalities of global protein-energy malnutrition from 1990 to 2019 and forecast prevalence for 2044: Data from the Global Burden of Disease Study 2019. Public Health 2023;225:102-9. Doi:10.1016/j.puhe.2023.10.003.
78. Carballo-Casla A; Sotos-Prieto M; García-Esquinas E; E AS; Caballero FF, et al. Animal and vegetable protein intake and malnutrition in older adults: A multicohort study. J Nutr Health Aging 2024;28:100002. Doi:10.1016/j.jnha.2023.100002.
79. Brien R; Hayes M; Sheldrake G; Tiwari B; Walsh P. Macroalgal proteins: A review. Foods 2022;11:571. Doi:10.3390/foods11040571.
80. Pereira L; Cotas J; Gonçalves AM. Seaweed proteins: A step towards sustainability? Nutrients 2024;16:1123. Doi:10.3390/nu16081123.
81. Shannon E; Abu-Ghannam N. Seaweeds as nutraceuticals for health and nutrition. Phycologia 2019;58:563-77. Doi:10.1080/00318884.2019.1640533.
82. O'Connor J; Meaney S; Williams GA; Hayes M. Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules 2020;25:2005. Doi:10.3390/molecules25082005.
83. Aasen IM; Sandbakken IS; Toldnes B; Roleda MY; Slizyte R. Enrichment of the protein content of the macroalgae Saccharina latissima and Palmaria palmata. Algal Res 2022;65:102727. Doi:10.1016/j.algal.2022.102727.
84. Echave J; Otero P; Garcia-Oliveira P; Munekata PES; Pateiro M, et al. Seaweed-derived proteins and peptides: Promising marine bioactives. Antioxidants (Basel) 2022;11:176. Doi:10.3390/antiox11010176.
85. Nadeeshani H; Hassouna A; Lu J. Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals. Crit Rev Food Sci Nutr 2022;62:6187-203. Doi:10.1080/10408398.2021.1898334.
86. Lozano Muñoz I; Díaz NF. Minerals in edible seaweed: Health benefits and food safety issues. Crit Rev Food Sci Nutr 2022;62:1592-607. Doi:10.1080/10408398.2020.1844637.
87. Nielsen CW; Rustad T; Holdt SL. Vitamin C from seaweed: A review assessing seaweed as contributor to daily intake. Foods 2021;10:198. Doi:10.3390/foods10010198.
88. Marques de Brito B; Campos VM; Neves FJ; Ramos LR; Tomita LY. Vitamin B12 sources in non-animal foods: A systematic review. Crit Rev Food Sci Nutr 2023;63:7853-67. Doi:10.1080/10408398.2022.2053057.
89. Gupta AK; Seth K; Maheshwari K; Baroliya PK; Meena M, et al. Biosynthesis and extraction of high-value carotenoid from algae. Front Biosci (Landmark Ed) 2021;26:171-90. Doi:10.52586/4932.
90. Mapelli-Brahm P; Gómez-Villegas P; Gonda ML; León-Vaz A; León R, et al. Microalgae, seaweeds and aquatic bacteria, archaea, and yeasts: Sources of carotenoids with potential antioxidant and anti-inflammatory health-promoting actions in the sustainability era. Mar Drugs 2023;21:340. Doi:10.3390/md21060340.
91. Gade A; Kumar MS. Gut microbial metabolites of dietary polyphenols and their potential role in human health and diseases. J Physiol Biochem 2023;79:695-718. Doi:10.1007/s13105-023-00981-1.
92. Rosa GP; Tavares WR; Sousa PMC; Pagès AK; Seca AML, et al. Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials. Mar Drugs 2019;18:8. Doi:10.3390/md18010008.
93. Hirode G; Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA 2020;323:2526-8. Doi:10.1001/jama.2020.4501.
94. Panchal SK; Ghattamaneni NKR; Magnusson M; Cole A; Roberts D, et al. Freshwater macroalgae, Oedogonium, grown in wastewater reduce diet-induced metabolic syndrome in rats. Int J Mol Sci 2022;23:13811. Doi:10.3390/ijms232213811.
95. Cotas J; Lomartire S; Gonçalves AMM; Pereira L. From ocean to medicine: Harnessing seaweed’s potential for drug development. Int J Mol Sci 2024;25:797. Doi:10.3390/ijms25020797.
96. Lobine D; Rengasamy KRR; Mahomoodally MF. Functional foods and bioactive ingredients harnessed from the ocean: Current status and future perspectives. Crit Rev Food Sci Nutr 2022;62:5794-823. Doi:10.1080/10408398.2021.1893643.
97. Temple NJ. A rational definition for functional foods: A perspective. Front Nutr 2022;9:957516. Doi:10.3389/fnut.2022.957516.
98. Panchal SK; Brown L. Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr Opin Pharmacol 2022;63:102182. Doi:10.1016/j.coph.2022.102182.
99. Brown L; Caligiuri SPB; Brown D; Pierce GN. Clinical trials using functional foods provide unique challenges. J Funct Foods 2018;45:233-8. Doi:10.1016/j.jff.2018.01.024.
100. Xi M; Dragsted LO. Biomarkers of seaweed intake. Genes Nutr 2019;14:24. Doi:10.1186/s12263-019-0648-4.
101. Rioux L-E; Beaulieu L; Turgeon SL. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocolloids 2017;68:255-65. Doi:10.1016/j.foodhyd.2017.02.005.
102. Tinellis C. Coastal Chef: Culinary Art of Seaweed and Algae in the 21st Century; Harbour Publishing: Australia, 2015; pp. 258.
103. goodFood. Seaweed recipes. Available online: https://www.bbcgoodfood.com/recipes/collection/seaweed-recipes (accessed on 16 May 2024).
104. Bon Appetit. 15 umami-packed seaweed recipes, because the leafy greens of the sea deserve love, too. Available online: https://www.bonappetit.com/recipes/healthy/slideshow/seaweed-recipes (accessed on 16 May 2024).
105. Healy LE; Zhu X; Pojić M; Sullivan C; Tiwari U, et al. Biomolecules from macroalgae-nutritional profile and bioactives for novel food product development. Biomolecules 2023;13:386. Doi:10.3390/biom13020386.
106. Escalante-Aburto A; Trujillo-de Santiago G; Álvarez MM; Chuck-Hernández C. Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Compr Rev Food Sci Food Saf 2021;20:5722-41. Doi:10.1111/1541-4337.12849.
107. Young M; Paul N; Birch D; Swanepoel L. Factors influencing the consumption of seaweed amongst young adults. Foods 2022;11:3052. Doi:10.3390/foods11193052.
108. Anusha Siddiqui S; Bahmid NA; Mahmud CMM; Boukid F; Lamri M, et al. Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to meat: A critical compilation of a decade of research. Crit Rev Food Sci Nutr 2023;63:6630-51. Doi:10.1080/10408398.2022.2036096.
109. Rogel-Castillo C; Latorre-Castañeda M; Muñoz-Muñoz C; Agurto-Muñoz C. Seaweeds in food: Current trends. Plants (Basel) 2023;12:2287. Doi:10.3390/plants12122287.
110. Cherry P; O'Hara C; Magee PJ; McSorley EM; Allsopp PJ. Risks and benefits of consuming edible seaweeds. Nutr Rev 2019;77:307-29. Doi:10.1093/nutrit/nuy066.
111. Kumar MS; Sharma SA. Toxicological effects of marine seaweeds: A cautious insight for human consumption. Crit Rev Food Sci Nutr 2021;61:500-21. Doi:10.1080/10408398.2020.1738334.
112. Banach JL; van der Berg JP; Kleter G; van Bokhorst-van de Veen H; Bastiaan-Net S, et al. Alternative proteins for meat and dairy replacers: Food safety and future trends. Crit Rev Food Sci Nutr 2023;63:11063-80. Doi:10.1080/10408398.2022.2089625.
113. Biris-Dorhoi E-S; Michiu D; Pop CR; Rotar AM; Tofana M, et al. Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients 2020;12:3085. Doi:10.3390/nu12103085.
114. Siladji C; Djordjevic V; Milijasevic JB; Heinz V; Terjung N, et al. Micro- and macroalgae in meat products. Foods 2024;13:826. Doi:10.3390/foods13060826.
115. Cikoš A-M; Čož-Rakovac R; Šubarić D; Jerković I; Ačkar Đ, et al. Macroalgae in the food industry – Opportunities and challenges. Engineering Power 2020;15:14-9. https://hrcak.srce.hr/244902.
116. Jönsson M; Maubert E; Merkel A; Fredriksson C; Karlsson EN, et al. A sense of seaweed: Consumer liking of bread and spreads with the addition of four different species of northern European seaweeds. A pilot study among Swedish consumers. Future Foods 2024;9:100292. Doi:10.1016/j.fufo.2023.100292.
117. Tyl C; Koga S; Krook JL; Andersen M; Tomasco PV, et al. Fermented and unfermented brown macroalgae as partial salt replacers in sodium-reduced dough and bread. Eur Food Res Technol 2024;250:1573-85. Doi:10.1007/s00217-024-04498-9.
118. Afonso NC; Catarino MD; Silva AMS; Cardoso SM. Brown macroalgae as valuable food ingredients. Antioxidants (Basel) 2019;8:365. Doi:10.3390/antiox8090365.
119. Intergovernmental Panel on Climate Change. Global warming of 1.5ºC. Available online: https://www.ipcc.ch/sr15/ (accessed on 18 May 2024).
120. Sustainable Brands. Algae may be a ‘brilliant’ solution for capturing carbon at gigaton scale. Available online: https://sustainablebrands.com/read/chemistry-materials-packaging/algae-may-be-a-brilliant-solution-for-capturing-carbon-at-gigaton-scale#:~:text=%E2%80%9CAlgae%20has%20a%20phenomenal%20capacity,Jovine%20told%20Sustainable%20Brands%C2%AE. (accessed on 18 May 2024).
121. Wu J; Keller DP; Oschlies A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: An Earth system modeling study. Earth Syst Dynam 2023;14:185-221. Doi:10.5194/esd-14-185-2023.
122. Pessarrodona A; Howard J; Pidgeon E; Wernberg T; Filbee-Dexter K. Carbon removal and climate change mitigation by seaweed farming: A state of knowledge review. Sci Total Environ 2024;918:170525. Doi:10.1016/j.scitotenv.2024.170525.
123. Park E; Yu H; Lim JH; Hee Choi J; Park KJ, et al. Seaweed metabolomics: A review on its nutrients, bioactive compounds and changes in climate change. Food Res Int 2023;163:112221. Doi:10.1016/j.foodres.2022.112221.
124. Sudhakar MP; Maurya R; Mehariya S; Karthikeyan OP; Dharani G, et al. Feasibility of bioplastic production using micro- and macroalgae - A review. Environ Res 2024;240:117465. Doi:10.1016/j.envres.2023.117465.
125. Tong KTX; Tan IS; Foo HCY; Lam MK; Lim S, et al. Advancement of biorefinery-derived platform chemicals from macroalgae: A perspective for bioethanol and lactic acid. Biomass Conver Biorefin 2024;14:1443-79. Doi:10.1007/s13399-022-02561-7.
126. Sharmila V G; Kumar M D; Pugazhendi A; Bajhaiya AK; Gugulothu P, et al. Biofuel production from macroalgae: Present scenario and future scope. Bioengineered 2021;12:9216-38. Doi:10.1080/21655979.2021.1996019.
127. Farghali M; Mohamed IMA; Osman AI; Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environ Chem Lett 2023;21:97-152. Doi:10.1007/s10311-022-01520-y.
128. Wanapat M; Prachumchai R; Dagaew G; Matra M; Phupaboon S, et al. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants. Sci Total Environ 2024;931:173015. Doi:10.1016/j.scitotenv.2024.173015.
129. Sasaki Y; Yoshikuni Y. Metabolic engineering for valorization of macroalgae biomass. Metab Eng 2022;71:42-61. Doi:10.1016/j.ymben.2022.01.005.