Breastfeeding’s Impact on Postpartum Maternal Immune Homeostasis

Main Article Content

Marlena C. Tyldesley, B.S. Elizabeth A. Bonney, MD, MPH

Abstract

There exists significant evidence of the beneficial effect of breastfeeding on the neonate, but there is comparatively little data on the effect on nursing mothers.  It is said that the positive metabolic and vascular effects of breastfeeding are related to an extension or an amelioration of the adaptive mechanisms generated during pregnancy. However, many such vascular and metabolic effects are related to regulation or dysregulation of the immune system. Because of this, interest in some quarters has turned to the study of postpartum immunobiology. This review focuses on the association between breastfeeding and the postpartum immune system. It examines the role of the immune system in breast development and involution, and the molecular biology and potential role of sex and lactation-related hormones important to breastfeeding in immunoregulation. It further describes animal models that may be used to examine relevant underlying mechanisms. It then explores human observational studies that have examined both local and systemic outcomes of immune system related disease in breastfeeding and non-breast-feeding women. It is hoped that this review will further raise interest in the area and generate detailed examination in both animal models and humans.

Keywords: Breastfeeding, postpartum, immune system

Article Details

How to Cite
TYLDESLEY, Marlena C.; BONNEY, Elizabeth A.. Breastfeeding’s Impact on Postpartum Maternal Immune Homeostasis. Medical Research Archives, [S.l.], v. 12, n. 10, jan. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5691>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v12i10.5691.
Section
Research Articles

References

1. Spelke B, Werner E. The Fourth Trimester of Pregnancy: Committing to Maternal Health and Well-Being Postpartum. R I Med J 2018;101(8):30-33.

2. Buchanan TA, Page KA. Approach to the patient with gestational diabetes after delivery. J Clin Endocrinol Metab. 2011;96(12):3592-3598.

3. Westerfield KL, Koenig K, Oh R. Breastfeeding: Common Questions and Answers. Am Fam Physician. 2018;98(6):368-373.

4. Gertosio C, Meazza C, Pagani S, Bozzola M. Breastfeeding and its gamut of benefits. Minerva Pediatr. 2016;68(3):201-212.

5. Vieira Borba V, Sharif K, Shoenfeld Y. Breastfeeding and autoimmunity: Programing health from the beginning. Am J Reprod Immunol. 2018; 79(1).

6. Krol KM, Grossmann T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(8):977-985.

7. Groër MW. Differences between exclusive breastfeeders, formula-feeders, and controls: a study of stress, mood, and endocrine variables. Biol Res Nurs. 2005;7(2):106-117.

8. Stuebe AM, Rich-Edwards JW. The reset hypothesis: lactation and maternal metabolism. Am J Perinatol. 2009;26(1):81-88.

9. Adam I, Rayis DA, NA AL, Ahmed ABA, Sharif ME, Elbashir MI. Association between breastfeeding and preeclampsia in parous women: a case -control study. Int Breastfeed J. 2021;16 (1):48.

10. La Rosa M, Kechichian T, Olson G, Saade G, Bytautiene Prewit E. Lactation Leads to Modifications in Maternal Renin-Angiotensin System in Later Life. Reprod Sci. 2020;27(1):260-266.

11. Poole AT, Vincent KL, Olson GL, et al. Effect of lactation on maternal postpartum cardiac function and adiposity: a murine model. Am J Obstet Gynecol. 2014;211(4):424.e421-427.

12. Herrera SR, Vincent KL, Poole A, et al. Long-Term Effect of Lactation on Maternal Cardiovascular Function and Adiposity in a Murine Model. Am J Perinatol. 2019;36(5):490-497.

13. Stary CM, Xu L, Voloboueva LA, et al. Nursing Markedly Protects Postpartum Mice From Stroke: Associated Central and Peripheral Neuroimmune Changes and a Role for Oxytocin. Frontiers in Neuroscience. 2019;13.

14. Morris EA, Hale SA, Badger GJ, Magness RR, Bernstein IM. Pregnancy induces persistent changes in vascular compliance in primiparous women. Am J Obstet Gynecol. 2015;212(5):633.e 631-636.

15. Groer MW, Davis MW, Smith K, Casey K, Kramer V, Bukovsky E. Immunity, inflammation and infection in post-partum breast and formula feeders. Am J Reprod Immunol. 2005;54(4):222-231.

16. Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am. 2023;43(1s):e1-e20.

17. Matzinger P. Essay 1: the Danger model in its historical context. Scand J Immunol. 2001;54(1-2):4-9.

18. Kesaraju P, Jaini R, Johnson JM, et al. Experimental autoimmune breast failure: a model for lactation insufficiency, postnatal nutritional deprivation, and prophylactic breast cancer vaccination. Am J Pathol. 2012;181(3):775-784.

19. Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4(4):155-164.

20. Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. J Immunol. 2024;212(4):513-521.

21. Nagy D, Gillis CMC, Davies K, et al. Developing ovine mammary terminal duct lobular units have a dynamic mucosal and stromal immune microenvironment. Commun Biol. 2021;4(1):993.

22. Plaks V, Boldajipour B, Linnemann JR, et al. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev Cell. 2015;34(5):493-504.

23. del Rio R, Sun Y, Alard P, Tung KS, Teuscher C. H2 control of natural T regulatory cell frequency in the lymph node correlates with susceptibility to day 3 thymectomy-induced autoimmune disease. J Immunol. 2011;186(1):382-389.

24. Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol. 2010;10(11):778-786.

25. Vink A, Warnier G, Brombacher F, Renauld JC. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J Exp Med. 1999;189 (9):1413-1423.

26. Binder CJ, Chang M-K, Shaw PX, et al. Innate and acquired immunity in atherogenesis. Nat Med. 2002;8(11):1218-1226.

27. McKay JT, Haro MA, Daly CA, et al. PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism. J Immunol. 2017;199(6):2020-2029.

28. Moon BG, Takaki S, Miyake K, Takatsu K. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. J Immunol. 2004;172(10):6020-6029.

29. Silvestre JS, Mallat Z, Duriez M, et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ Res. 2000;87(6):448-452.

30. Balaji S, Wang X, King A, et al. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. Faseb j. 2017;31(3):868-881.

31. Martinson HA, Jindal S, Durand-Rougely C, Borges VF, Schedin P. Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int J Cancer. 2015;136(8):1803-1813.

32. Betts CB, Pennock ND, Caruso BP, Ruffell B, Borges VF, Schedin P. Mucosal Immunity in the Female Murine Mammary Gland. J Immunol. 2018; 201(2):734-746.

33. Lefrère H, Moore K, Floris G, et al. Poor Outcome in Postpartum Breast Cancer Patients Is Associated with Distinct Molecular and Immunologic Features. Clin Cancer Res. 2023;29(18):3729-3743.

34. Jeppsson S, Rannevik G, Thorell JI, Wide L. Influence of LH/FSH releasing hormone (LRH) on the basal secretion of gonadotrophins in relation to plasma levels of oestradiol, progesterone and prolactin during the post-partum period in lactating and in non-lactating women. Acta Endocrinol (Copenh). 1977;84(4):713-728.

35. Chen WZ, Li Y, Yu HL, et al. Monitoring menstrual cycle, gestation and lactation by measuring urinary oestradiol and progesterone in the captive golden snub-nosed monkey (Rhinopithecus roxellanae). Anim Reprod Sci. 2017;181:79-85.

36. Hackwell ECR, Ladyman SR, Brown RSE, Grattan DR. Mechanisms of Lactation-induced Infertility in Female Mice. Endocrinology. 2023;164(5).

37. Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity. 2023;56(11):2472-2491.

38. Ramírez-de-Arellano A, Pereira-Suárez AL, Rico-Fuentes C, López-Pulido EI, Villegas-Pineda JC, Sierra-Diaz E. Distribution and Effects of Estrogen Receptors in Prostate Cancer: Associated Molecular Mechanisms. Frontiers in Endocrinology. 2022;12.

39. Notas G, Kampa M, Castanas E. G Protein-Coupled Estrogen Receptor in Immune Cells and Its Role in Immune-Related Diseases. Front Endocrinol (Lausanne). 2020;11:579420.

40. Carreras E, Turner S, Frank MB, et al. Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4. Blood. 2010;115(2):238-246.

41. Curran EM, Berghaus LJ, Vernetti NJ, Saporita AJ, Lubahn DB, Estes DM. Natural killer cells express estrogen receptor-alpha and estrogen receptor-beta and can respond to estrogen via a non-estrogen receptor-alpha-mediated pathway. Cell Immunol. 2001;214(1):12-20.

42. Tamaki M, Konno Y, Kobayashi Y, et al. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils. Immunol Lett. 2014;160(1):72-78.

43. Pazos M, Sperling RS, Moran TM, Kraus TA. The influence of pregnancy on systemic immunity. Immunol Res. 2012;54(1-3):254-261.

44. Taneja V. Sex Hormones Determine Immune Response. Front Immunol. 2018;9:1931.

45. Borba VV, Zandman-Goddard G, Shoenfeld Y. Prolactin and Autoimmunity. Front Immunol. 2018;9:73.

46. Javadian A, Salehi E, Bidad K, Sahraian MA, Izad M. Effect of estrogen on Th1, Th2 and Th17 cytokines production by proteolipid protein and PHA activated peripheral blood mononuclear cells isolated from multiple sclerosis patients. Arch Med Res. 2014;45(2):177-182.

47. Pedroza DA, Subramani R, Lakshmanaswamy R. Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel). 2020;12(9).

48. Medina-Laver Y, Rodríguez-Varela C, Salsano S, Labarta E, Domínguez F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int J Mol Sci. 2021;22(20).

49. Mittelman-Smith MA, Rudolph LM, Mohr MA, Micevych PE. Rodent Models of Non-classical Progesterone Action Regulating Ovulation. Frontiers in Endocrinology. 2017;8.

50. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab. 2012;97(5):E719-730.

51. Dai Q, Provost MP, Raburn DJ, Price TM. Progesterone Increases Mitochondria Membrane Potential in Non-human Primate Oocytes and Embryos. Reprod Sci. 2020;27(5):1206-1214.

52. Leo JC, Guo C, Woon CT, Aw SE, Lin VC. Glucocorticoid and mineralocorticoid cross-talk with progesterone receptor to induce focal adhesion and growth inhibition in breast cancer cells. Endocrinology. 2004;145(3):1314-1321.

53. Ahn SH, Nguyen SL, Kim TH, et al. Nuclear Progesterone Receptor Expressed by the Cortical Thymic Epithelial Cells Dictates Thymus Involution in Murine Pregnancy. Front Endocrinol (Lausanne). 2022;13:846226.

54. Dosiou C, Hamilton AE, Pang Y, et al. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J Endocrinol. 2008;196(1):67-77.

55. Chiu L, Nishimura M, Ishii Y, et al. Enhancement of the expression of progesterone receptor on progesterone-treated lymphocytes after immunotherapy in unexplained recurrent spontaneous abortion. Am J Reprod Immunol. 1996;35(6):552-557.

56. Ndiaye K, Poole DH, Walusimbi S, et al. Progesterone effects on lymphocytes may be mediated by membrane progesterone receptors. J Reprod Immunol. 2012;95(1-2):15-26.

57. Hierweger AM, Engler JB, Friese MA, et al. Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. Am J Reprod Immunol. 2019;81(2):e13084.

58. Campe KJ, Redlich A, Zenclussen AC, Busse M. An increased proportion of progesterone receptor A in peripheral B cells from women who ultimately underwent spontaneous preterm birth. J Reprod Immunol. 2022;154:103756.

59. Cain DW, Bortner CD, Diaz-Jimenez D, Petrillo MG, Gruver-Yates A, Cidlowski JA. Murine Glucocorticoid Receptors Orchestrate B Cell Migration Selectively between Bone Marrow and Blood. J Immunol. 2020;205(3):619-629.

60. Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne). 2019;10:198.

61. Goddard LM, Ton AN, Org T, Mikkola HK, Iruela-Arispe ML. Selective suppression of endothelial cytokine production by progesterone receptor. Vascul Pharmacol. 2013;59(1-2):36-43.

62. Legorreta-Haquet MV, Santana-Sánchez P, Chávez-Sánchez L, Chávez-Rueda AK. The effect of prolactin on immune cell subsets involved in SLE pathogenesis. Front Immunol. 2022;13:1016427.

63. Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne). 2022;13:949396.

64. Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. Biochemistry (Mosc). 2019;84(4):329-345.

65. López-Rincón G, Gutiérrez-Pabello J, Díaz-Otero F, Muñoz-Valle JF, Pereira-Suárez AL, Estrada-Chávez C. Mycobacterium bovis infection in cattle induces differential expression of prolactin receptor isoforms in macrophages. Comp Immunol Microbiol Infect Dis. 2013;36(6):619-629.

66. Chambers WH, Amoscato AA, Smith MS, Kenniston TW, Herberman RB, Appasamy PM. Prolactin receptor expression by rat NK cells. Nat Immun. 1995;14(3):145-156.

67. Gagnerault MC, Touraine P, Savino W, Kelly PA, Dardenne M. Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol. 1993;150(12):5673-5681.

68. Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci. 2024;25(4).

69. Tang MW, Garcia S, Gerlag DM, Tak PP, Reedquist KA. Insight into the Endocrine System and the Immune System: A Review of the Inflammatory Role of Prolactin in Rheumatoid Arthritis and Psoriatic Arthritis. Front Immunol. 2017;8:720.

70. Sun R, Li AL, Wei HM, Tian ZG. Expression of prolactin receptor and response to prolactin stimulation of human NK cell lines. Cell Res. 2004; 14(1):67-73.

71. Yang L, Hu Y, Li X, Zhao J, Hou Y. Prolactin modulates the functions of murine spleen CD11c-positive dendritic cells. Int Immunopharmacol. 2006;6(9):1478-1486.

72. Tomio A, Schust DJ, Kawana K, et al. Prolactin can modulate CD4+ T-cell response through receptor-mediated alterations in the expression of T-bet. Immunol Cell Biol. 2008;86(7):616-621.

73. Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13(11):777-789.

74. Flores-Fernández R, Aponte-López A, Suárez-Arriaga MC, et al. Prolactin Rescues Immature B Cells from Apoptosis-Induced BCR-Aggregation through STAT3, Bcl2a1a, Bcl2l2, and Birc5 in Lupus-Prone MRL/lpr Mice. Cells. 2021;10(2).

75. Truchet S, Honvo-Houéto E. Physiology of milk secretion. Best Pract Res Clin Endocrinol Metab. 2017;31(4):367-384.

76. Carreón-Talavera R, Santana-Sánchez P, Fuentes-Pananá EM, et al. Prolactin promotes proliferation of germinal center B cells, formation of plasma cells, and elevated levels of IgG3 anti-dsDNA autoantibodies. Front Immunol. 2022;13: 1017115.

77. Jara LJ, Medina G, Saavedra MA, et al. Prolactin has a pathogenic role in systemic lupus erythematosus. Immunol Res. 2017;65(2):512-523.

78. Saha S, Gonzalez J, Rosenfeld G, Keiser H, Peeva E. Prolactin alters the mechanisms of B cell tolerance induction. Arthritis Rheum. 2009;60(6): 1743-1752.

79. Liu Y, Zhang Z, Jin Q, et al. Hyperprolactinemia is associated with a high prevalence of serum autoantibodies, high levels of inflammatory cytokines and an abnormal distribution of peripheral B-cell subsets. Endocrine. 2019;64(3):648-656.

80. Wang P, Yang HP, Tian S, et al. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity. J Neuroimmunol. 2015;289:152-161.

81. Landgraf R, Neumann I, Holsboer F, Pittman QJ. Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci. 1995;7(4):592-598.

82. Borroto-Escuela DO, Cuesta-Marti C, Lopez-Salas A, et al. The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: potential relevance for brain and behavior. Front Mol Neurosci. 2022;15:1055344.

83. Dou D, Liang J, Zhai X, et al. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin Sci (Lond). 2021;135(4):597-611.

84. Tang Y, Shi Y, Gao Y, et al. Oxytocin system alleviates intestinal inflammation by regulating macrophages polarization in experimental colitis. Clin Sci (Lond). 2019;133(18):1977-1992.

85. Szeto A, Sun-Suslow N, Mendez AJ, Hernandez RI, Wagner KV, McCabe PM. Regulation of the macrophage oxytocin receptor in response to inflammation. Am J Physiol Endocrinol Metab. 2017;312(3):E183-e189.

86. Ndiaye K, Poole DH, Pate JL. Expression and Regulation of Functional Oxytocin Receptors in Bovine T Lymphocytes1. Biology of Reproduction. 2008;78(4):786-793.

87. Diercks BP. The importance of Ca(2+) microdomains for the adaptive immune response. Biochim Biophys Acta Mol Cell Res. 2024;1871 (5):119710.

88. Nagaleekar VK, Diehl SA, Juncadella I, et al. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. J Immunol. 2008;181(12):8315-8322.

89. Sun J, Xu Z, Mao Y, Zhang T, Qin Y, Hua D. Prognostic role of oxytocin receptor in colon adenocarcinoma. Open Med (Wars). 2021;16(1): 1762-1776.

90. Oliveira LJ, Barreto RS, Perecin F, Mansouri-Attia N, Pereira FT, Meirelles FV. Modulation of maternal immune system during pregnancy in the cow. Reprod Domest Anim. 2012;47 Suppl 4:384-393.

91. Schäfer-Somi S, Gabriel C, Aslan S. Embryo-maternal communication in dogs: Immune system related factors. Theriogenology. 2020;150:382-387.

92. Ott TL. Immunological detection of pregnancy: Evidence for systemic immune modulation during early pregnancy in ruminants. Theriogenology. 2020;150:498-503.

93. Price AK, Bridges RS. The effects of bromocriptine treatment during early pregnancy on postpartum maternal behaviors in rats. Dev Psychobiol. 2014;56(6):1431-1437.

94. Murray IC, McComb DJ, Hellmann P, Kovacs K, Thorner MO. The effect of bromocriptine on the mammary glands of hyperprolactinemic rats. A histologic, ultrastructural and morphometric study. Exp Pathol. 1984;26(3):131-140.

95. Fitzgerald P, Dinan TG. Prolactin and dopamine: what is the connection? A review article. J Psychopharmacol. 2008;22(2 Suppl):12-19.

96. Beasley AM, Kahn LP, Windon RG. The periparturient relaxation of immunity in Merino ewes infected with Trichostrongylus colubriformis: parasitological and immunological responses. Vet Parasitol. 2010;168(1-2):60-70.

97. Asai K, Komine Y, Kozutsumi T, Yamaguchi T, Komine K, Kumagai K. Predominant subpopulations of T lymphocytes in the mammary gland secretions during lactation and intraepithelial T lymphocytes in the intestine of dairy cows. Vet Immunol Immunopathol. 2000;73(3-4):233-240.

98. Shafer-Weaver KA, Sordillo LM. Bovine CD8+ suppressor lymphocytes alter immune responsiveness during the postpartum period. Vet Immunol Immunopathol. 1997;56(1-2):53-64.

99. Jeddi PA, Keusch J, Lydyard PM, Delves PJ. The stability of lymphocytic beta 1,4-galactosyltransferase expression during pregnancy and lactation. Scand J Immunol. 1997;45(2):145-150.

100. Kochenour NK. Lactation suppression. Clin Obstet Gynecol. 1980;23(4):1045-1059.

101. Mayer AD, Carter L, Jorge WA, Mota MJ, Tannu S, Rosenblatt JS. Mammary stimulation and maternal aggression in rodents: thelectomy fails to reduce pre- or postpartum aggression in rats. Horm Behav. 1987;21(4):501-510.

102. Mann MA, Harvey PJ. Mice: the initiation and maintenance of pregnancy-induced aggression following thelectomy. Behav Neural Biol. 1988;49(1):12-26.

103. Purba FY, Ishimoto Y, Nii T, Yoshimura Y, Isobe N. Effect of temporary cessation of milking on the innate immune components in goat milk. J Dairy Sci. 2021;104(9):10374-10381.

104. Russell ES, Mohammed T, Smeaton L, et al. Immune activation markers in peripartum women in Botswana: association with feeding strategy and maternal morbidity. PLoS One. 2014;9(3):e89928.

105. Islami F, Liu Y, Jemal A, et al. Breastfeeding and breast cancer risk by receptor status--a systematic review and meta-analysis. Ann Oncol. 2015;26(12):2398-2407.

106. Zhou Y, Chen J, Li Q, Huang W, Lan H, Jiang H. Association between breastfeeding and breast cancer risk: evidence from a meta-analysis. Breastfeed Med. 2015;10(3):175-182.

107. Anstey EH, Shoemaker ML, Barrera CM, O'Neil ME, Verma AB, Holman DM. Breastfeeding and Breast Cancer Risk Reduction: Implications for Black Mothers. Am J Prev Med. 2017;53(3s1):S40-s46.

108. Kolak A, Kamińska M, Sygit K, et al. Primary and secondary prevention of breast cancer. Ann Agric Environ Med. 2017;24(4):549-553.

109. Coughlin SS. Epidemiology of Breast Cancer in Women. Adv Exp Med Biol. 2019;1152:9-29.

110. Elder AM, Stoller AR, Black SA, Lyons TR. Macphatics and PoEMs in Postpartum Mammary Development and Tumor Progression. J Mammary Gland Biol Neoplasia. 2020;25(2):103-113.

111. Basree MM, Shinde N, Koivisto C, et al. Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Res. 2019;21(1):80.

112. Pensa S, Watson CJ, Poli V. Stat3 and the inflammation/acute phase response in involution and breast cancer. J Mammary Gland Biol Neoplasia. 2009;14(2):121-129.

113. Froehlich K, Schmidt A, Heger JI, et al. Breast cancer, placenta and pregnancy. Eur J Cancer. 2019;115:68-78.

114. Ramirez RA, Lee A, Schedin P, Russell JS, Masso-Welch PA. Alterations in mast cell frequency and relationship to angiogenesis in the rat mammary gland during windows of physiologic tissue remodeling. Dev Dyn. 2012;241(5):890-900.

115. Jasti S, Farahbakhsh M, Nguyen S, Petroff BK, Petroff MG. Immune response to a model shared placenta/tumor-associated antigen reduces cancer risk in parous mice. Biol Reprod. 2017;96 (1):134-144.

116. MacDonell JW, Ito S. Breastfeeding anaphylaxis case study. J Hum Lact. 1998;14(3):243-244.

117. Ornek SA, Suroji Alkilinc A, Kızıltac U, Kızıltac K, Kocaturk E. Effect of Puberty, Menstruation, Pregnancy, Lactation, and Menopause on Chronic Urticaria Activity. J Cutan Med Surg. 2023;27(5): 466-471.

118. Lazarus JH, Parkes AB, Premawardhana LD. Postpartum thyroiditis. [Review] [55 refs]. Autoimmunity. 2002;35(3):169-173.

119. Borba VV, Zandman-Goddard G, Shoenfeld Y. Exacerbations of autoimmune diseases during pregnancy and postpartum. Best Pract Res Clin Endocrinol Metab. 2019;33(6):101321.

120. Vieira Borba V, Shoenfeld Y. Prolactin, autoimmunity, and motherhood: when should women avoid breastfeeding? Clin Rheumatol. 2019;38(5):1263-1270.

121. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339(5):285-291.

122. Krysko KM, Rutatangwa A, Graves J, Lazar A, Waubant E. Association Between Breastfeeding and Postpartum Multiple Sclerosis Relapses: A Systematic Review and Meta-analysis. JAMA Neurol. 2020;77(3):327-338.

123. Malhi G, Tandon P, Perlmutter JW, Nguyen G, Huang V. Risk Factors for Postpartum Disease Activity in Women With Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Inflamm Bowel Dis. 2022;28(7):1090-1099.

124. Davies TF. The thyroid immunology of the postpartum period. Thyroid. 1999;9(7):675-684.

125. Chiba M, Tsuji T, Komatsu M, Watanabe H, Takahashi M. Ulcerative colitis in the postpartum period. Autops Case Rep. 2020;10(4):e2020187.

126. Christou EAA, Banos A, Kosmara D, Bertsias GK, Boumpas DT. Sexual dimorphism in SLE: above and beyond sex hormones. Lupus. 2019;28(1):3-10.

127. Ansari AA, Fett JD, Carraway RE, Mayne AE, Onlamoon N, Sundstrom JB. Autoimmune mechanisms as the basis for human peripartum cardiomyopathy. Clin Rev Allergy Immunol. 2002; 23(3):301-324.

128. Koczo A, Marino A, Jeyabalan A, et al. Breastfeeding, Cellular Immune Activation, and Myocardial Recovery in Peripartum Cardiomyopathy. JACC Basic Transl Sci. 2019;4(3):291-300.

129. Kane S, Lemieux N. The role of breastfeeding in postpartum disease activity in women with inflammatory bowel disease. Am J Gastroenterol. 2005;100(1):102-105.

130. Julsgaard M, Nørgaard M, Hvas CL, Grosen A, Hasseriis S, Christensen LA. Self-reported adherence to medical treatment, breastfeeding behaviour, and disease activity during the postpartum period in women with Crohn's disease. Scand J Gastroenterol. 2014;49(8):958-966.

131. Knight CL, Nelson-Piercy C. Management of systemic lupus erythematosus during pregnancy: challenges and solutions. Open Access Rheumatol. 2017;9:37-53.

132. Noviani M, Wasserman S, Clowse ME. Breastfeeding in mothers with systemic lupus erythematosus. Lupus. 2016;25(9):973-979.

133. Bjerkaas Hanssen M, Malm Gulati A, Koksvik H, Wallenius M. Breastfeeding in women with systemic lupus erythematosus: results from a Norwegian quality register. Int Breastfeed J. 2023; 18(1):37.

134. Orefice V, Ceccarelli F, Pirone C, et al. Breastfeeding in women affected by systemic lupus erythematosus: Rate, duration and associated factors. Lupus. 2021;30(6):913-920.

135. Li W, Wang T. Breastfeeding Initiation, Duration, and Associated Factors in Mothers with Systemic Lupus Erythematosus. Breastfeed Med. 2022;17(11):958-963.

136. Götestam Skorpen C, Lydersen S, Gilboe IM, et al. Disease Activity During Pregnancy and the First Year Postpartum in Women With Systemic Lupus Erythematosus. Arthritis Care Res (Hoboken). 2017;69(8):1201-1208.

137. Iijima T, Tada H, Hidaka Y, et al. Prediction of postpartum onset of rheumatoid arthritis. Ann Rheum Dis. 1998;57(8):460-463.

138. Chen H, Wang J, Zhou W, Yin H, Wang M. Breastfeeding and Risk of Rheumatoid Arthritis: A Systematic Review and Metaanalysis. J Rheumatol. 2015;42(9):1563-1569.

139. Carrazco-Chapa A, Perez-Barbosa L, Cardenas-de la Garza JA, et al. Sociodemographic and obstetric factors may affect breastfeeding attitudes, self-efficacy, and knowledge in women with rheumatic diseases: a retrospective analysis of self-reported surveys. Rheumatol Int. 2024.

140. Raine C, Ciurtin C, Jury EC, et al. DAS28(3) CRP is a reliable measure of disease activity in pregnant women with rheumatoid arthritis. Clin Exp Rheumatol. 2023;41(11):2224-2229.

141. Pakpoor J, Disanto G, Lacey MV, Hellwig K, Giovannoni G, Ramagopalan SV. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J Neurol. 2012;259(10):2246-2248.

142. Dobson R, Jokubaitis VG, Giovannoni G. Change in pregnancy-associated multiple sclerosis relapse rates over time: a meta-analysis. Mult Scler Relat Disord. 2020;44:102241.

143. Schubert C, Steinberg L, Peper J, et al. Postpartum relapse risk in multiple sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023;94(9):718-725.

144. Gokina NI, Fairchild RI, Bishop NM, Dawson TE, Prakash K, Bonney EA. Kinetics of Postpartum Mesenteric Artery Structure and Function Relative to Pregnancy and Lactation in Mice. Reprod Sci. 2021;28(4):1200-1215.