Pharmacokinetics of Single-dose CLX-155 and Metabolites in Female Balb/C Mice

Main Article Content

John M. York, PharmD, MBA, PhDc (Dr. Y) Sophie Kang Ava Dalton Yearam Tak Natasha Boyette Mahesh Kandula Subbu Apparsundaram

Abstract

Introduction: CLX-155 is a novel oral 5’-DFCR prodrug involving 5’-DFCR as an intermediate for generating 5-FU. Unlike capecitabine, CLX-155 undergoes esterase-mediated hydrolysis in the intestinal cells rather than the liver, leading to a different metabolic and pharmacokinetic profile. This study addresses the following research questions: 1) what is the single-dose PK of CLX-155, and 2) how does it compare to capecitabine?


Methods: This study was a parallel, single-dose study with four treatment groups. Investigators randomized 48 female Balb/C mice into four treatment groups: CLX-155 at 250 mg/kg and 500 mg/kg and capecitabine at 500 mg/kg and 1000 mg/kg. Animals received oral treatment once. Investigators evaluated PK parameters via noncompartmental analysis using WinNonlin Version 7.0 (Certara, Princeton, NJ).


Results: For CLX-155, the systemic exposure (Cmax and AUC0-t) of 5-FU, 5’-DFCR, and 5’-DFUR demonstrated proportionality to the administered dose. 5’-DFCR and 5’-DFUR showed a delayed Tmax compared to 5-FU. For capecitabine, the systemic exposure (Cmax and AUC0-t) of 5-FU, 5'-DFUR, and 5’-DFCR was less than dose proportional. CLX-155 demonstrated higher exposure at 500 mg/kg compared to capecitabine at the same dose. CLX-155 displayed marginally higher 5’-DFUR and 5-FU plasma AUC0-t in relation to capecitabine at equivalent 500 mg/kg doses. CLX-155 displayed marginally higher plasma AUC0-t of 5-FU and 5’-DFUR in relation to capecitabine at the equivalent doses of 500 mg/kg.


Conclusion: CLX-155 and capecitabine experience rapid absorption following oral administration and conversion to 5’-DFCR, 5’-DFUR, and 5-FU. The results suggest the conversion of CLX-155 to its metabolites 5’-DFUR and 5-FU was more efficient than that of capecitabine. Such observations have suggested that administration of CLX-155 at a lower dose level is a possibility. CLX-155’s infusion-like conversion to its metabolites 5’-DFUR and 5-FU provided a unique PK profile that may explain its antitumor activity in animals at half the dose of capecitabine reported in the previous study.

Keywords: 5-FU, Capecitabine, CLX-155, Pyrimidines, Antimetabolites, Pharmacokinetics

Article Details

How to Cite
YORK, John M. et al. Pharmacokinetics of Single-dose CLX-155 and Metabolites in Female Balb/C Mice. Medical Research Archives, [S.l.], v. 12, n. 9, oct. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5709>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v12i9.5709.
Section
Research Articles

References

1. Drug Summary. Accessed Mar 29, 2024. https://www.pdr.net/drug-summary/?drugLabelId=Xeloda-capecitabine-2039

2. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther. 2020;206:107 447. doi:10.1016/j.pharmthera.2019.107447

3. Edgardo S. Santos et al., Drug Shortages in Oncology: ASCO Clinical Guidance for Alternative Treatments. JCO Oncol Pract. 20, 19-32(2024). doi:10.1200/OP.23.00545

4. Walko CM, Lindley C. Capecitabine: A Review. Clin Ther. 2005;27(1). doi:10.1016/j.clinthera

5. Fluorouracil (Systemic). Lexi-Drugs. Hudson, OH: Lexicomp, 2024. http://online.lexi.com/. Updated Mar 27, 2024. Accessed Mar 29, 2024.

6. Jacobs BAW, Deenen MJ, Joerger M, et al. Pharmacokinetics of Capecitabine and Four Metabolites in a Heterogeneous Population of Cancer Patients: A Comprehensive Analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8(12): 940-950. doi:10.1002/psp4.12474.

7. Mineur L, Vazquez L, Belkacemi M, et al. Capecitabine/Mitomycin versus 5-Fluorouracil/Mitomycin in Combination with Simultaneous Integrated Boost Intensity-Modulated Radiation Therapy for Anal Cancer. Curr Oncol. 2023;30(9):8563-8574. doi:10.3390/ curroncol30090621

8. Reigner B, Blesch K, Weidekamm E. Clinical Pharmacokinetics of Capecitabine. Clin Pharmacokinet. 2001;40(2):85-104. doi:10.2165/00 003088-200140020-00002

9. Visacri MB, Duarte NC, Lima T de M, et al. Adverse reactions and adherence to capecitabine: A prospective study in patients with gastrointestinal cancer. J Oncol Pharm Pract. 2022; 28(2):326-336. doi:10.1177/1078155221989420

10. Kobashi N, Matsumoto H, Zhao S, et al. The Thymidine Phosphorylase Imaging Agent 123I-IIMU Predicts the Efficacy of Capecitabine. J Nucl Med. 2016;57(8):1276-1281. doi:10.2967/jnumed .115.165811

11. Jóźwiak M, Filipowska A, Fiorino F, Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol. 2020;87 1:172937. doi:10.1016/j.ejphar.2020.172937

12. Boyette N, Dalton A, Tak Y, et al. CLX-155: A Novel, Oral 5-FU Prodrug Displaying Antitumor Activity in Human Colon Cancer Xenograft Model in Nude Mice. Med Res Arch. 2024;12(6). doi:10.1 8103/mra.v12i6.5219

13. Ishitsuka H. Capecitabine: preclinical pharmacology studies. Invest New Drugs. 2000;18 (4):343-354. doi:10.1023/a:1006497231579

14. Onodera H, Kuruma I, Ishitsuka H, Horii I. Pharmacokinetic Study of Capecitabine in Monkeys and Mice; Species Differences in Distribution of the Enzymes Responsible for its Activation to 5-FU. Drug Metab Pharmacokinet. 2000;15(5):439-451. doi:10.2133/dmpk.15.439

15. Potter M. History of the BALB/c family. Curr Top Microbiol Immunol. 1985;122:1-5. doi:10.100 7/978-3-642-70740-7_1

16. Amini A, Safdari Y, Tash Shamsabadi F. Near-Infrared Fluorescence Imaging of EGFR-Overexpressing Tumors in the Mouse Xenograft Model Using scFv-IRDye800CW and Cetuximab-IRDye800CW. Mol Imaging. 2022;2022:9589820. doi:10.1155/2022/9589820

17. Mackean M, Planting A, Twelves C, et al. Phase I and pharmacologic study of intermittent twice-daily oral therapy with capecitabine in patients with advanced and/or metastatic cancer. J Clin Oncol. 1998;16(9):2977-2985. doi:10.1200/JCO.1998.16.9.2977

18. Czejka M, Schueller J, Farkouh A, Gruenberger B, Scheithauer W. Plasma disposition of capecitabine and its metabolites 5’DFCR and 5’DFUR in a standard and dose-intensified monotherapy regimen. Cancer Chemother Pharmacol. 2011;67(3):613-619. doi:10.1007/s002 80-010-1363-4

19. Di L. The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics. Curr Drug Metab. 2019;20(2):91-102. doi:10.2174/13892002 19666180821094502

20. Maggo G, Grover SC, Grin A. Capecitabine induced colitis. Pathol Res Pract. 2014;210(9):606-8. doi: 10.1016/j.prp.204.05.005

21. Stathopoulos GP, Koutantos J, Lazaki H, Rigatos SK, Stathopoulos J, Deliconstantinos G. Capecitabine (Xeloda) as monotherapy in advanced breast and colorectal cancer: effectiveness and side-effects. Anticancer Res. 2007;27(3B):1653-1656

22. Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, et al. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice. J Biol Rhythms. 2023;38(2):171-184. doi:10.1177/074873 04221148779

23. Desmoulin F, Gilard V, Malet-Martino M, Martino R. Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab Dispos. 2002;30(11):1221-1229. doi:10.1124/dmd.30.11.1221

24. Tsukamoto Y, Kato Y, Ura M, et al. Investigation of 5-FU disposition after oral administration of capecitabine, a triple-prodrug of 5-FU, using a physiologically based pharmacokinetic model in a human cancer xenograft model: comparison of the simulated 5-FU exposures in the tumour tissue between human and xenograft model. Biopharm Drug Dispos. 2001;22(1):1-14. doi:10.1002/bdd.250

25. Reigner B, Blesch K, Weidekamm E. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 2001;40(2):85-104. doi:10.2165/00 003088-20014 0020-00002

26. Tebbutt NC, Cattell E, Midgley R, Cunningham D, Kerr D. Systemic treatment of colorectal cancer. Eur J Cancer. 2002;38(7):1000-1015. doi:10.1016/s0959-8049(02)00062-x

27. Piedbois P, Rougier P, et al. Meta-analysis Group In Cancer, Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. J Clin Oncol. 1998;16(1):301-308. doi:10.1200/JCO. 1998.16.1.301

28. Quinney SK, Sanghani SP, Davis WI, et al. Hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther. 2005;313(3):10 11-1016. doi:10.1124/jpet.104.081265

29. Banerjee S, Kundu A. Lipid-drug conjugates: a potential nanocarrier system for oral drug delivery applications. Daru. 2018;26(1):65-75. doi:10.1007/ s40199-018-0209-1

30. Irby D, Du C, Li F. Lipid-Drug Conjugate for Enhancing Drug Delivery. Mol Pharm. 2017;14(5):1 325-1338. doi:10.1021/acs.molpharmaceut.6b01027