Pharmacokinetics of Single-dose CLX-155 and Metabolites in Female Balb/C Mice
Main Article Content
Abstract
Introduction: CLX-155 is a novel oral 5’-DFCR prodrug involving 5’-DFCR as an intermediate for generating 5-FU. Unlike capecitabine, CLX-155 undergoes esterase-mediated hydrolysis in the intestinal cells rather than the liver, leading to a different metabolic and pharmacokinetic profile. This study addresses the following research questions: 1) what is the single-dose PK of CLX-155, and 2) how does it compare to capecitabine?
Methods: This study was a parallel, single-dose study with four treatment groups. Investigators randomized 48 female Balb/C mice into four treatment groups: CLX-155 at 250 mg/kg and 500 mg/kg and capecitabine at 500 mg/kg and 1000 mg/kg. Animals received oral treatment once. Investigators evaluated PK parameters via noncompartmental analysis using WinNonlin Version 7.0 (Certara, Princeton, NJ).
Results: For CLX-155, the systemic exposure (Cmax and AUC0-t) of 5-FU, 5’-DFCR, and 5’-DFUR demonstrated proportionality to the administered dose. 5’-DFCR and 5’-DFUR showed a delayed Tmax compared to 5-FU. For capecitabine, the systemic exposure (Cmax and AUC0-t) of 5-FU, 5'-DFUR, and 5’-DFCR was less than dose proportional. CLX-155 demonstrated higher exposure at 500 mg/kg compared to capecitabine at the same dose. CLX-155 displayed marginally higher 5’-DFUR and 5-FU plasma AUC0-t in relation to capecitabine at equivalent 500 mg/kg doses. CLX-155 displayed marginally higher plasma AUC0-t of 5-FU and 5’-DFUR in relation to capecitabine at the equivalent doses of 500 mg/kg.
Conclusion: CLX-155 and capecitabine experience rapid absorption following oral administration and conversion to 5’-DFCR, 5’-DFUR, and 5-FU. The results suggest the conversion of CLX-155 to its metabolites 5’-DFUR and 5-FU was more efficient than that of capecitabine. Such observations have suggested that administration of CLX-155 at a lower dose level is a possibility. CLX-155’s infusion-like conversion to its metabolites 5’-DFUR and 5-FU provided a unique PK profile that may explain its antitumor activity in animals at half the dose of capecitabine reported in the previous study.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther. 2020;206:107 447. doi:10.1016/j.pharmthera.2019.107447
3. Edgardo S. Santos et al., Drug Shortages in Oncology: ASCO Clinical Guidance for Alternative Treatments. JCO Oncol Pract. 20, 19-32(2024). doi:10.1200/OP.23.00545
4. Walko CM, Lindley C. Capecitabine: A Review. Clin Ther. 2005;27(1). doi:10.1016/j.clinthera
5. Fluorouracil (Systemic). Lexi-Drugs. Hudson, OH: Lexicomp, 2024. http://online.lexi.com/. Updated Mar 27, 2024. Accessed Mar 29, 2024.
6. Jacobs BAW, Deenen MJ, Joerger M, et al. Pharmacokinetics of Capecitabine and Four Metabolites in a Heterogeneous Population of Cancer Patients: A Comprehensive Analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8(12): 940-950. doi:10.1002/psp4.12474.
7. Mineur L, Vazquez L, Belkacemi M, et al. Capecitabine/Mitomycin versus 5-Fluorouracil/Mitomycin in Combination with Simultaneous Integrated Boost Intensity-Modulated Radiation Therapy for Anal Cancer. Curr Oncol. 2023;30(9):8563-8574. doi:10.3390/ curroncol30090621
8. Reigner B, Blesch K, Weidekamm E. Clinical Pharmacokinetics of Capecitabine. Clin Pharmacokinet. 2001;40(2):85-104. doi:10.2165/00 003088-200140020-00002
9. Visacri MB, Duarte NC, Lima T de M, et al. Adverse reactions and adherence to capecitabine: A prospective study in patients with gastrointestinal cancer. J Oncol Pharm Pract. 2022; 28(2):326-336. doi:10.1177/1078155221989420
10. Kobashi N, Matsumoto H, Zhao S, et al. The Thymidine Phosphorylase Imaging Agent 123I-IIMU Predicts the Efficacy of Capecitabine. J Nucl Med. 2016;57(8):1276-1281. doi:10.2967/jnumed .115.165811
11. Jóźwiak M, Filipowska A, Fiorino F, Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol. 2020;87 1:172937. doi:10.1016/j.ejphar.2020.172937
12. Boyette N, Dalton A, Tak Y, et al. CLX-155: A Novel, Oral 5-FU Prodrug Displaying Antitumor Activity in Human Colon Cancer Xenograft Model in Nude Mice. Med Res Arch. 2024;12(6). doi:10.1 8103/mra.v12i6.5219
13. Ishitsuka H. Capecitabine: preclinical pharmacology studies. Invest New Drugs. 2000;18 (4):343-354. doi:10.1023/a:1006497231579
14. Onodera H, Kuruma I, Ishitsuka H, Horii I. Pharmacokinetic Study of Capecitabine in Monkeys and Mice; Species Differences in Distribution of the Enzymes Responsible for its Activation to 5-FU. Drug Metab Pharmacokinet. 2000;15(5):439-451. doi:10.2133/dmpk.15.439
15. Potter M. History of the BALB/c family. Curr Top Microbiol Immunol. 1985;122:1-5. doi:10.100 7/978-3-642-70740-7_1
16. Amini A, Safdari Y, Tash Shamsabadi F. Near-Infrared Fluorescence Imaging of EGFR-Overexpressing Tumors in the Mouse Xenograft Model Using scFv-IRDye800CW and Cetuximab-IRDye800CW. Mol Imaging. 2022;2022:9589820. doi:10.1155/2022/9589820
17. Mackean M, Planting A, Twelves C, et al. Phase I and pharmacologic study of intermittent twice-daily oral therapy with capecitabine in patients with advanced and/or metastatic cancer. J Clin Oncol. 1998;16(9):2977-2985. doi:10.1200/JCO.1998.16.9.2977
18. Czejka M, Schueller J, Farkouh A, Gruenberger B, Scheithauer W. Plasma disposition of capecitabine and its metabolites 5’DFCR and 5’DFUR in a standard and dose-intensified monotherapy regimen. Cancer Chemother Pharmacol. 2011;67(3):613-619. doi:10.1007/s002 80-010-1363-4
19. Di L. The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics. Curr Drug Metab. 2019;20(2):91-102. doi:10.2174/13892002 19666180821094502
20. Maggo G, Grover SC, Grin A. Capecitabine induced colitis. Pathol Res Pract. 2014;210(9):606-8. doi: 10.1016/j.prp.204.05.005
21. Stathopoulos GP, Koutantos J, Lazaki H, Rigatos SK, Stathopoulos J, Deliconstantinos G. Capecitabine (Xeloda) as monotherapy in advanced breast and colorectal cancer: effectiveness and side-effects. Anticancer Res. 2007;27(3B):1653-1656
22. Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, et al. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice. J Biol Rhythms. 2023;38(2):171-184. doi:10.1177/074873 04221148779
23. Desmoulin F, Gilard V, Malet-Martino M, Martino R. Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab Dispos. 2002;30(11):1221-1229. doi:10.1124/dmd.30.11.1221
24. Tsukamoto Y, Kato Y, Ura M, et al. Investigation of 5-FU disposition after oral administration of capecitabine, a triple-prodrug of 5-FU, using a physiologically based pharmacokinetic model in a human cancer xenograft model: comparison of the simulated 5-FU exposures in the tumour tissue between human and xenograft model. Biopharm Drug Dispos. 2001;22(1):1-14. doi:10.1002/bdd.250
25. Reigner B, Blesch K, Weidekamm E. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 2001;40(2):85-104. doi:10.2165/00 003088-20014 0020-00002
26. Tebbutt NC, Cattell E, Midgley R, Cunningham D, Kerr D. Systemic treatment of colorectal cancer. Eur J Cancer. 2002;38(7):1000-1015. doi:10.1016/s0959-8049(02)00062-x
27. Piedbois P, Rougier P, et al. Meta-analysis Group In Cancer, Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. J Clin Oncol. 1998;16(1):301-308. doi:10.1200/JCO. 1998.16.1.301
28. Quinney SK, Sanghani SP, Davis WI, et al. Hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther. 2005;313(3):10 11-1016. doi:10.1124/jpet.104.081265
29. Banerjee S, Kundu A. Lipid-drug conjugates: a potential nanocarrier system for oral drug delivery applications. Daru. 2018;26(1):65-75. doi:10.1007/ s40199-018-0209-1
30. Irby D, Du C, Li F. Lipid-Drug Conjugate for Enhancing Drug Delivery. Mol Pharm. 2017;14(5):1 325-1338. doi:10.1021/acs.molpharmaceut.6b01027