Development and evaluation of blood-based prognostic biomarkers for COVID disease outcomes using EpiSwitch 3-dimensional genomic regulatory immuno-genetic profiling

Main Article Content

Ewan Hunter Dmitri Pchejetski Alexandre Akoulitchev Jane Mellor

Abstract

Infection of humans by the SARS-CoV-2 virus leads to highly variable host responses and diverse clinical outcomes, ranging from asymptomatic to hospitalization, intensive care unit (ICU) admission and death. 10% of those with acute infections continue to display post-acute sequelae of coronavirus disease (PASC), now colloquially termed Post-COVID Syndrome (PCS). There is an acute unmet need for unbiased diagnostic biomarkers to predict outcomes before or during the early stages of acute infection, to discover more about PCS and to enable targeting of therapeutics to individual patients. Here, starting with whole blood taken at the time of diagnosis, a predictive classifier model containing six 3-dimensional (3D)-genomic biomarkers able to identify individuals at the highest risk of acute severe COVID disease with a positive predictive value of 93% and balanced accuracy of 88% was developed. The discovery process started with a whole 3D-genome microarray generating 964,631 data points per patient. Mapping the position of the most informative 3D markers to nearby genes revealed associations with ACE2, olfactory, Gby, Ca2+ and nitric oxide signalling; innate and adaptive immunity; programme death ligand 1 (PD-L1); prostaglandin E2 (PGE2); and the inflammatory cytokine CCL5, confirming variability in host immune responses, rather than viral genetics or load, as the primary determinant of disease outcomes, and supporting the use of mammalian target of rapamycin (mTOR) inhibitors and immunosuppressants to treat acute severe disease. Using the 3D genomics knowledgebase, with >1 billion 3D genomic datapoints derived from clinical studies, a subset of 77 of the acute COVID-associated prognostic 3D biomarkers were found close to 10 loci genetically linked to fatigue-dominant PCS, and to be informative biomarkers in 6 diseases with fatigue as a symptom. Network analysis linked individual 3D genomic markers to pathways, diseases and therapies. 3D-genomic profiling, as an integrator of multi-omic molecular regulation, offers a new approach for better understanding the complex heterogeneous clinical outcomes triggered by infectious agents.

Keywords: SARS-CoV-2, acute COVID-19 disease, Post-COVID Syndrome (PSC), blood-based biomarkers, prediction of COVID disease severity

Article Details

How to Cite
HUNTER, Ewan et al. Development and evaluation of blood-based prognostic biomarkers for COVID disease outcomes using EpiSwitch 3-dimensional genomic regulatory immuno-genetic profiling. Medical Research Archives, [S.l.], v. 12, n. 9, sep. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5737>. Date accessed: 09 jan. 2025. doi: https://doi.org/10.18103/mra.v12i9.5737.
Section
Research Articles

References

1. Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40:37. doi:10.1186/s41232-020-00146-3
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. Feb 15 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
3. Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls. 2024.
4. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Dec 17 2020;383(25):2451-2460. doi:10.1056/NEJMcp2009575
5. Couzin-Frankel J. The mystery of the pandemic's 'happy hypoxia'. Science. May 1 2020;368(6490):455-456. doi:10.1126/science.368.6490.455
6. Wang Z, Tang K. Combating COVID-19: health equity matters. Nat Med. Apr 2020;26(4):458. doi:10.1038/s41591-020-0823-6
7. Chippa V, Aleem A, Anjum F. Postacute Coronavirus (COVID-19) Syndrome. StatPearls. 2024.
8. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. Mar 2023;21(3):133-146. doi:10.1038/s41579-022-00846-2
9. Liew F, Efstathiou C, Fontanella S, et al. Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease. Nat Immunol. Apr 2024;25(4):607-621. doi:10.1038/s41590-024-01778-0
10. Taylor K, Pearson M, Das S, Sardell J, Chocian K, Gardner S. Genetic risk factors for severe and fatigue dominant long COVID and commonalities with ME/CFS identified by combinatorial analysis. J Transl Med. Nov 1 2023;21(1):775. doi:10.1186/s12967-023-04588-4
11. Driggs D, Selby I, Roberts M, et al. Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise. Radiol Artif Intell. Jul 2021;3(4):e210011. doi:10.1148/ryai.2021210011
12. Mellor J. The impact of epigenetics on the future of personalised medicine. In: Carini C, Fidock M, Van Gool A, eds. Handbook of biomarkers and precision medicine. CRC Press; 2019.
13. Tordini F, Aldinucci M, Milanesi L, Lio P, Merelli I. The Genome Conformation As an Integrator of Multi-Omic Data: The Example of Damage Spreading in Cancer. Frontiers in genetics. 2016;7:194. doi:10.3389/fgene.2016.00194
14. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. Feb 15 2002;295(5558):1306-11.
15. Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet. Apr 2020;21(4):207-226. doi:10.1038/s41576-019-0195-2
16. Alshaker H, Hunter E, Salter M, et al. Monocytes acquire prostate cancer specific chromatin conformations upon indirect co-culture with prostate cancer cells. Frontiers in oncology. 2022;12:990842. doi:10.3389/fonc.2022.990842
17. Alshaker H, Mills R, Hunter E, et al. Chromatin conformation changes in peripheral blood can detect prostate cancer and stratify disease risk groups. J Transl Med. Jan 28 2021;19(1):46. doi:10.1186/s12967-021-02710-y
18. Carini C, Hunter E, Scottish Early Rheumatoid Arthritis Inception cohort I, et al. Chromosome conformation signatures define predictive markers of inadequate response to methotrexate in early rheumatoid arthritis. J Transl Med. Jan 29 2018;16(1):18. doi:10.1186/s12967-018-1387-9
19. Grand FH, Slater M, Hunter E, Akoulitchev A. Ectopic gene deregulations and chromosome conformations: integrating novel molecular testing into clinical applications from leukemias to gliomas. In: Carinia C, Fidock M, Van Gool A, eds. Handbook of biomarkers and precision medicine. CRC Press; 2019.
20. Hall ECR, Murgatroyd C, Stebbings GK, et al. The Prospective Study of Epigenetic Regulatory Profiles in Sport and Exercise Monitored Through Chromosome Conformation Signatures. Genes (Basel). Aug 7 2020;11(8)doi:10.3390/genes11080905
21. Hunter E, McCord R, Ramadass AS, et al. Comparative molecular cell-of-origin classification of diffuse large B-cell lymphoma based on liquid and tissue biopsies. Translational Medicine Communications. 2020/03/24 2020;5(1):5. doi:10.1186/s41231-020-00054-1
22. Hunter E, Salter M, Powell R, et al. Development and Validation of Blood-Based Predictive Biomarkers for Response to PD-1/PD-L1 Checkpoint Inhibitors: Evidence of a Universal Systemic Core of 3D Immunogenetic Profiling across Multiple Oncological Indications. Cancers (Basel). May 10 2023;15(10)doi:10.3390/cancers15102696
23. Hunter E, Salter M, Powell R, et al. Whole Genome 3D Blood Biopsy Profiling of Canine Cancers: Development and Validation of EpiSwitch Multi-Choice Array-Based Diagnostic Test. bioRxiv. 2024:2024.05.22.595358. doi:10.1101/2024.05.22.595358
24. Jakub JW, Grotz TE, Jordan P, et al. A pilot study of chromosomal aberrations and epigenetic changes in peripheral blood samples to identify patients with melanoma. Melanoma Res. Oct 2015;25(5):406-11. doi:10.1097/CMR.0000000000000182
25. Pchejetski D, Hunter E, Dezfouli M, et al. Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection. Cancers (Basel). Jan 29 2023;15(3)doi:10.3390/cancers15030821
26. Salter M, Corfield E, Ramadass A, et al. Initial Identification of a Blood-Based Chromosome Conformation Signature for Aiding in the Diagnosis of Amyotrophic Lateral Sclerosis. EBioMedicine. Jul 2018;33:169-184. doi:10.1016/j.ebiom.2018.06.015
27. Yan H, Hunter E, Akoulitchev A, et al. Epigenetic chromatin conformation changes in peripheral blood can detect thyroid cancer. Surgery. 01 2019;165(1):44-49. doi:10.1016/j.surg.2018.05.081
28. Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence. 2021/03/01 2021;3(3):199-217. doi:10.1038/s42256-021-00307-0
29. Bai X, Wang H, Ma L, et al. Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nature Machine Intelligence. 2021/12/01 2021;3(12):1081-1089. doi:10.1038/s42256-021-00421-z
30. Hunter E, Koutsothanasi C, Wilson A, et al. 3D genomic capture of regulatory immuno-genetic profiles in COVID-19 patients for prognosis of severe COVID disease outcome. bioRxiv. 2021:2021.03.14.435295. doi:10.1101/2021.03.14.435295
31. Hunter E, Koutsothanasi C, Wilson A, et al. Development and validation of blood-based prognostic biomarkers for severity of COVID disease outcome using EpiSwitch 3D genomic regulatory immuno-genetic profiling. medRxiv. 2021:2021.06.21.21259145. doi:10.1101/2021.06.21.21259145
32. WHO. Clinical management of COVID-19: living guideline. 2020;
33. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science. Apr 22 2016;352(6284):aaf1098. doi:10.1126/science.aaf1098
34. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. May 2000;25(1):25-9. doi:10.1038/75556
35. Alpert A, Pickman Y, Leipold M, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. Mar 2019;25(3):487-495. doi:10.1038/s41591-019-0381-y
36. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. Oct 25 2005;102(43):15545-50. doi:10.1073/pnas.0506580102
37. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. Jan 4 2017;45(D1):D362-D368. doi:10.1093/nar/gkw937
38. Ben-Ari Fuchs S, Lieder I, Stelzer G, et al. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data. Omics. Mar 2016;20(3):139-51. doi:10.1089/omi.2015.0168
39. Tsourkas A, Behlke MA, Xu Y, Bao G. Spectroscopic features of dual fluorescence/luminescence resonance energy-transfer molecular beacons. Anal Chem. Aug 1 2003;75(15):3697-703. doi:10.1021/ac034295l
40. Fabregat A, Sidiropoulos K, Viteri G, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics. Mar 2 2017;18(1):142. doi:10.1186/s12859-017-1559-2
41. Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. Dec 2021;27(6):582-603. doi:10.1177/1073858420956905
42. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. Mar 27 2020;367(6485):1444-1448. doi:10.1126/science.abb2762
43. Meletiadis J, Tsiodras S, Tsirigotis P. Interleukin-6 Blocking vs. JAK-STAT Inhibition for Prevention of Lung Injury in Patients with COVID-19. Infect Dis Ther. Dec 2020;9(4):707-713. doi:10.1007/s40121-020-00326-1
44. Alvarez RA, Berra L, Gladwin MT. Home Nitric Oxide Therapy for COVID-19. American journal of respiratory and critical care medicine. Jul 1 2020;202(1):16-20. doi:10.1164/rccm.202005-1906ED
45. Lo MW, Kemper C, Woodruff TM. COVID-19: Complement, Coagulation, and Collateral Damage. J Immunol. Sep 15 2020;205(6):1488-1495. doi:10.4049/jimmunol.2000644
46. Ghazavi A, Ganji A, Keshavarzian N, Rabiemajd S, Mosayebi G. Cytokine profile and disease severity in patients with COVID-19. Cytokine. Jan 2021;137:155323. doi:10.1016/j.cyto.2020.155323
47. Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Frontiers in immunology. 2020;11:589380. doi:10.3389/fimmu.2020.589380
48. Fan Z, Zhuo Y, Tan X, et al. SARS-CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. J Med Virol. Nov 2006;78(11):1365-73. doi:10.1002/jmv.20707
49. Schulte-Schrepping J, Reusch N, Paclik D, et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell. Sep 17 2020;182(6):1419-1440 e23. doi:10.1016/j.cell.2020.08.001
50. Telcian AG, Laza-Stanca V, Edwards MR, et al. RSV-induced bronchial epithelial cell PD-L1 expression inhibits CD8+ T cell nonspecific antiviral activity. The Journal of infectious diseases. Jan 1 2011;203(1):85-94. doi:10.1093/infdis/jiq020
51. McNally B, Ye F, Willette M, Flano E. Local blockade of epithelial PDL-1 in the airways enhances T cell function and viral clearance during influenza virus infection. Journal of virology. Dec 2013;87(23):12916-24. doi:10.1128/JVI.02423-13
52. Okubo Y, Torrey H, Butterworth J, Zheng H, Faustman DL. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin Transl Immunology. Jan 2016;5(1):e56. doi:10.1038/cti.2015.43
53. Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-cell dysregulation in COVID-19. Biochemical and biophysical research communications. Jan 29 2021;538:204-210. doi:10.1016/j.bbrc.2020.10.079
54. Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J. Nov 2006;27(21):2530-7. doi:10.1093/eurheartj/ehl222
55. Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. J Immunol. Oct 1 2016;197(7):2567-75. doi:10.4049/jimmunol.1600242
56. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. Oct 2016;28(5):514-524. doi:10.1016/j.smim.2016.10.009
57. Shyer JA, Flavell RA, Bailis W. Metabolic signaling in T cells. Cell research. Aug 2020;30(8):649-659. doi:10.1038/s41422-020-0379-5
58. Herrmann J, Mori V, Bates JHT, Suki B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun. Sep 28 2020;11(1):4883. doi:10.1038/s41467-020-18672-6
59. Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. Nov 12 2015;527(7577):240-4. doi:10.1038/nature15721
60. Villadiego J, Ramirez-Lorca R, Cala F, et al. Is Carotid Body Infection Responsible for Silent Hypoxemia in COVID-19 Patients? Function (Oxf). 2021;2(1):zqaa032. doi:10.1093/function/zqaa032
61. Gage SL, Nighorn A. The role of nitric oxide in memory is modulated by diurnal time. Front Syst Neurosci. 2014;8:59. doi:10.3389/fnsys.2014.00059
62. Karupiah G, Harris N. Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med. Jun 1 1995;181(6):2171-9. doi:10.1084/jem.181.6.2171
63. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science advances. Jul 31 2020;6(31)doi:10.1126/sciadv.abc5801
64. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. Feb 25 2021;384(8):693-704. doi:10.1056/NEJMoa2021436
65. Cernuda-Morollon E, Millan J, Shipman M, Marelli-Berg FM, Ridley AJ. Rac activation by the T-cell receptor inhibits T cell migration. PLoS ONE. Aug 25 2010;5(8):e12393. doi:10.1371/journal.pone.0012393
66. Philippe A, Günther S, Rancic J, et al. VEGF-A plasma levels are associated with impaired DLCO and radiological sequelae in long COVID patients. Angiogenesis. 2024/02/01 2024;27(1):51-66. doi:10.1007/s10456-023-09890-9
67. Cervia-Hasler C, Brüningk SC, Hoch T, et al. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science. 2024;383(6680):eadg7942. doi:doi:10.1126/science.adg7942
68. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671-1692.
69. Crutchley JL, Wang XQD, Ferraiuolo MA, Dostie J. Chromatin conformation signatures: ideal human disease biomarkers? Biomarkers in medicine. 2010;4(4):611-629.
70. Merelli I, Tordini F, Drocco M, Aldinucci M, Lio P, Milanesi L. Integrating multi-omic features exploiting Chromosome Conformation Capture data. Frontiers in genetics. 2015;6:40. doi:10.3389/fgene.2015.00040
71. Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res. Nov 2016;39(11):1548-1555. doi:10.1007/s12272-016-0854-1
72. Masat L, Caldwell J, Armstrong R, et al. Association of SWAP-70 with the B cell antigen receptor complex. Proceedings of the National Academy of Sciences of the United States of America. Feb 29 2000;97(5):2180-4. doi:10.1073/pnas.040374497
73. Borggrefe T, Wabl M, Akhmedov AT, Jessberger R. A B-cell-specific DNA recombination complex. The Journal of biological chemistry. Jul 3 1998;273(27):17025-35. doi:10.1074/jbc.273.27.17025
74. Ravichandran S, Lee Y, Grubbs G, et al. Longitudinal antibody repertoire in "mild" versus "severe" COVID-19 patients reveals immune markers associated with disease severity and resolution. Science advances. Mar 2021;7(10)doi:10.1126/sciadv.abf2467
75. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. Jun 2020;46(6):1089-1098. doi:10.1007/s00134-020-06062-x
76. Gianni P, Goldin M, Ngu S, Zafeiropoulos S, Geropoulos G, Giannis D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review. World J Exp Med. Jul 20 2022;12(4):53-67. doi:10.5493/wjem.v12.i4.53
77. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. Jul 15 2020;253:117723. doi:10.1016/j.lfs.2020.117723
78. Peiro OM, Delgado-Cornejo JR, Sanchez-Gimenez R, et al. Prevalence and prognostic implications of myocardial injury across different waves of COVID-19. Front Cardiovasc Med. 2024;11:1297824. doi:10.3389/fcvm.2024.1297824
79. Zheng Y, Li R, Liu S. Immunoregulation with mTOR inhibitors to prevent COVID‐19 severity: A novel intervention strategy beyond vaccines and specific antiviral medicines. Journal of medical virology. 2020;92(9):1495-1500.
80. Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. The Lancet Respiratory Medicine. 2020;8(3):267-276.
81. Solanich X, Antolí A, Padullés N, et al. Pragmatic, open-label, single-center, randomized, phase II clinical trial to evaluate the efficacy and safety of methylprednisolone pulses and tacrolimus in patients with severe pneumonia secondary to COVID-19: The TACROVID trial protocol. Contemp Clin Trials Commun. Mar 2021;21:100716. doi:10.1016/j.conctc.2021.100716
82. Sterne JA, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. Jama. 2020;324(13):1330-1341.
83. Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. International immunology. 2019;31(9):597-606.
84. Jing H, Vassiliou E, Ganea D. Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. Journal of Leucocyte Biology. 2003;74(5):868-879.
85. Takayama K, Garcı́a-Cardeña G, Sukhova GK, Comander J, Gimbrone MA, Libby P. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. Journal of Biological Chemistry. 2002;277(46):44147-44154.
86. Robb CT, Goepp M, Rossi AG, Yao C. Non‐steroidal anti‐inflammatory drugs, prostaglandins, and COVID‐19. British Journal of pharmacology. 2020;177(21):4899-4920.
87. Hong W, Chen Y, You K, et al. Celebrex adjuvant therapy on coronavirus disease 2019: an experimental study. Frontiers in pharmacology. 2020;11:561674.
88. Smeitink J, Jiang X, Pecheritsyna S, Renkema H, van Maanen R, Beyrath J. Hypothesis: mPGES-1-derived prostaglandin E2, a so far missing link in COVID-19 pathophysiology? 2020;
89. Ehrenpreis ED, Kruchko DH. Rapid review: Nonsteroidal anti-inflammatory agents and aminosalicylates in COVID-19 infections. Journal of clinical gastroenterology. 2020;54(7):602-605.