The effect of acupuncture on hippocampal synaptic plasticity in Alzheimer Disease Mouse Model: Possible mechanisms of energy transportation in neurons

Main Article Content

Chang-le Wu Meng-jing Wang Xiao-shu Zhang Li Zhang Yi-yun Yuan Ping Du Min Feng Shu-guang Yu Qi Liu

Abstract

Objective: To study the mechanism of acupuncture-promoted synaptic plasticity in hippocampal neurons of senescence-accelerated mouse-prone 8 mice with respect to neuronal energy substrate transport.


Methods: Forty-three senescence-accelerated mouse-prone 8 mice were randomly divided into Alzheimer’s disease model and acupuncture groups, and twenty senescence-accelerated mouse resistant 1 mice were used as the normal group. Acupuncture group received acupuncture at the “Baihui” and “Yongquan” acupoints for 40 days. The Morris water maze was used to detect the learning and memory capabilities of the mice, and in vivo electrophysiology and transmission electron microscopy were used to evaluate the synaptic functional and structural plasticity of hippocampal neurons. Glucose, lactate, and pyruvate in the hippocampal intercellular fluid, as well as the expression of glucose transporter 3 and monocarboxylate transporters 2 and 4, were analyzed using microdialysis, immunohistochemistry, and western blotting.


Results: The Morris water maze data showed that compared with Alzheimer’s disease model mice, mice of acupuncture group exhibited a shorter escape latency, increased number of effective zone crossings, and increased percentage of swimming distance in the target quadrant. Acupuncture increased the postsynaptic density thickness of Alzheimer’s disease model mice and decreased the latency amplitude after tetanic stimulation and width of the synaptic cleft. Glucose, lactate, and pyruvate contents in the hippocampal intercellular fluid were significantly reduced in Alzheimer’s disease model mice, but the reductions were more pronounced after acupuncture treatment. Furthermore, acupuncture prominently elevated glucose transporter 3 and monocarboxylate transporters 2 expression in the CA1 and dentate gyrus regions of the hippocampus of Alzheimer’s disease model mice. The elevation of monocarboxylate transporters 4 expression mostly appeared in the CA1 region.


Conclusion: Acupuncture improved the learning and memory capabilities as well as the hippocampal synaptic structural plasticity of senescence-accelerated mouse-prone 8 mice. Its effects were likely related to the regulation of glucose transporter 3, monocarboxylate transporters 2, and monocarboxylate transporters 4 expression in the hippocampal tissue to increase the energy substrate reserve of neurons and improve the substrate-matching ability of the cellular response.

Keywords: acupuncture; Alzheimer’s disease; synaptic plasticity; neuronal energy substrate transport

Article Details

How to Cite
WU, Chang-le et al. The effect of acupuncture on hippocampal synaptic plasticity in Alzheimer Disease Mouse Model: Possible mechanisms of energy transportation in neurons. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5739>. Date accessed: 15 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5739.
Section
Research Articles

References

1. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell. 2019;179(2):312-339. Doi: 10.1016/j.cell.2019.09.001

2. Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology. 2014; 79:172-179. Doi: 10.1016/j.neuropharm.2013.10.018

3. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789-791.
Doi: 10.1126/science.1074069

4. Puzzo D, Piacentini R, Fá M, Gulisano W, Li PD, Staniszewski A, et al. LTP and memory impairment caused by extracellular Aβ and Tau oligomers is APP-dependent. Elife. 2017;6: e26991. Doi: 10.7554/eLife.26991

5. Blandini F, Braunewell KH, Manahan-Vaughan D, Orzi F, Sarti P. Neurodegeneration and energy metabolism: from chemistry to clinics. Cell Death Differ. 2004;11(4):479-484. Doi: 10.1038/sj.cdd.4401323

6. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005; 19(14):2040-2041.
Doi: 10.1096/fj.05-3735fje

7. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 2018;14(3):318-329. Doi: 10.1016/j.jalz.2017.09.011

8. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science. 1999;283 (5401):496-497.
Doi: 10.1126/science.283.5401.496

9. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810-823. Doi: 10.1016/j.cell.2011.02.018

10. Mason S. Lactate Shuttles in Neuroenergetics-Homeostasis, Allostasis and Beyond. Front Neurosci. 2017; 11(43):1-15. Doi: 10.3389/fnins.2017.00043

11. Netzahualcoyotzi C, Pellerin L. Neuronal and astroglial monocarboxylate transporters play key but distinct roles in hippocampus-dependent learning and memory formation. Prog Neurobiol. 2020; 194:101888.
Doi: 10.1016/j.pneurobio.2020.101888

12. Szablewski L. Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease. Int J Mol Sci. 2021;22(15):8142. Doi: 10.3390/ijms22158142

13. Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortes-Molina F, Alegria K, et al. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem. 2019;294(52):20135-20147. Doi: 10.1074/jbc.RA119.009093

14. Peng J, Zeng F, He YH, Tang Y, Yin HY, Yu SG. Study on the effect of electroacupuncture on mitochondria in the hippocampus of SAMP8 mice, Acupuncture Research (Chin). 2007;32 (6) 364-367. Doi: CNKI: SUN: XCYJ.0.2007-06-004.

15. Wu QF, Guo LL, Yu SG, Zhang Q, Lu SF, Zeng F, et al. A (1)H NMR-based metabonomic study on the SAMP8 and SAMR1 mice and the effect of electro-acupuncture. Exp Gerontol. 2011;46(10): 787-793. Doi: 10.1016/j.exger.2011.06.002

16. Wang YY, Yu SF, Xue HY, Li Y, Zhao C, Jin YH, et al. Effectiveness and Safety of Acupuncture for the Treatment of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci. 2020;12(98):1-21.
Doi: 10.3389/fnagi.2020.00098

17. Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, et al. Experimental Evidence of the Benefits of Acupuncture for Alzheimer’s Disease: An Updated Review. Front Neurosci. 2020; 14:549772. Doi: 10.3389/fnins.2020.549772

18. Xie LS, Liu Y, Zhang N, Li CY, Aaron FS, George W, et al. Electroacupuncture Improves M2 Microglia Polarization and Glia Anti-inflammation of Hippocampus in Alzheimer’s Disease. Front Neurosci. 2021; 15:689629. Doi: 10.3389/fnins.2021.689629

19. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848-858. Doi: 10.1038/nprot.2006.116

20. Shen MH, Tang QQ, Li ZR, Ma P. Effects of electroacupuncture on long-term potentiation of hippocampus in a rat model of Alzheimer’s disease induced by Aβ (25-35). Acupuncture Research (Chin). 2010;35(01):3-7. Doi:10.13702/j.1000-0607.2010.01.011.

21. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Academic Press. San Diego. 1997: 186.

22. Jones DG, Calverley RK. Frequency of occurrence of perforated synapses in developing rat neocortex. Neurosci Lett. 1991;129(2):189-192. Doi: 10.1016/0304-3940(91)90458-6

23. Jones DG, Devon RM. An ultrastructural study into the effects of pentobarbitone on synaptic organization. Brain Res. 1978;147(1):47-63. Doi:10.1016/0006-8993 (78) 90771-0

24. Liu B, Liu J, Shi JS. SAMP8 Mice as a Model of Age-Related Cognition Decline with Underlying Mechanisms in Alzheimer’s Disease. J Alzheimers Dis. 2020;75(2):385-395. Doi: 10.3233/JAD-200063

25. Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci. 2013;15(4):445-454.
Doi:10.31887/DCNS.2013.15.4/hjahn

26. Kelleher-Andersson J. Discovery of neurogenic, Alzheimer’s disease therapeutics. Curr Alzheimer Res. 2006;3(1):55-62. Doi: 10.2174/156720506775697179

27. Apostolova LG, Mosconi L, Thompson PM, Green AE, Hwang KS, Ramirez A, et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging. 2010; 31(7):1077-1088.
Doi: 10.1016/j.neurobiolaging.2008.08.008

28. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511(7509):348-352. Doi: 10.1038/nature13294

29. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31-39. Doi: 10.1038/361031a0

30. Scullin CS, Partridge LD. Modulation by pregnenolone sulfate of filtering properties in the hippocampal trisynaptic circuit. Hippocampus. 2012;22(11):2184-2198. Doi: 10.1002/hipo.22038

31. Yiu AP, Rashid AJ, Josselyn SA. Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2011;36(11):2169-2186. Doi: 10.1038/npp.2011.107

32. Tanti A, Belzung C. Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific. Neuroscience. 2013; 252:234-252.
Doi: 10.1016/j.neuroscience.2013.08.017

33. Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature. 2014;513(7518):426-430. Doi: 10.1038/nature13725

34. Huang Y. Preliminary study on the relationship between immune function status and LTP and the mechanism of puzzling effect of Liu Wei Di Huang Tang and its active ingredient CA4-3. Chinese People’s Liberation Army Academy of Military Medical Sciences. 2009:127.

35. Lu SF, Shao X, Tang Y, Yin HY, Chen J, Yu SG. Mechanism of neural cell adhesion in hippocampal neuronal synaptic plasticity in mice with Alzheimer’s disease model (SAMP8) promoted by electroacupuncture. Chinese Journal of Rehabilitation Medicine (Chin).2008;23(12):1057-1060. Doi: CNKI: SUN: ZGKF.0.2008-12-003.

36. Yang G, Pei YN, Shao SJ, Gao YS, Zhang SJ, Hu C. Effects of electroacupuncture at “Baihui” and “Yongquan” points on the expression of synaptic plasticity-related proteins in the hippocampus of app/ps1 double transgenic mice. Acupuncture Research (Chin).2020;45(04):310-314. Doi:10.13702/j.1000-0607.190012.

37. Bergersen LH, Magistretti PJ, Pellerin L. Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex. 2005;15(4):361-370.
Doi: 10.1093/cercor/bhh138

38. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab. 2003;23(11) :1298-1306.
Doi: 10.1097/01.WCB.0000091761.61714.25

39. Pellerin L, Magistretti PJ. How to balance the brain energy budget while spending glucose differently. J Physiol. 2003;546(Pt 2):325. Doi: 10.1113/jphysiol.2002.035105

40. Zwingmann C, Leibfritz D. Regulation of glial metabolism studied by 13C-NMR. NMR Biomed. 2003;16(6-7):370-399. Doi: 10.1002/nbm.850

41. Mächler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, et al. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons. Cell Metab. 2016;23(1):94-102. Doi: 10.1016/j.cmet.2015.10.010

42. Lu W, Huang J, Sun S, Huang S, Gan S, Xu J, et al. Changes in lactate content and monocarboxylate transporter 2 expression in Aβ₂₅₋₃₅-treated rat model of Alzheimer’s disease. Neurol Sci. 2015; 36(6):871-876. Doi: 10.1007/s10072-015-2087-3

43. Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol. 2000;529(Pt 2):285-293. Doi: 10.1111/j.1469-7793. 2000. 00285.x

44. Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res. 2005;79(1-2):11-18. Doi: 10.1002/jnr.20294

45. Petit JM, Tobler I, Kopp C, Morgenthaler F, Borbély AA, Magistretti PJ. Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration. Sleep. 2010;33(7):901-908. Doi: 10.1093/sleep/33.7.901