Water quality in the karstic coastal municipality of Hunucmá, Yucatán, México. Risks to human health

Main Article Content

Daniel Rosas-Sánchez Dr. Ángel Gabriel Polanco Rodríguez Jazmín Salett Novelo- Castilla Saúl Israel Chuc-Chuc Guillermo Daniel Ku-Martínez

Abstract

A study was conducted to characterize water quality during the dry and rainy periods in the municipality of Hunucmá, Yucatán, México, by determining the concentrations of toxic metals, nitrates, and coliforms, in samples taken from twelve household wells and three drinking water distribution wells. The state of Yucatán has a karst aquifer of high vulnerability to groundwater contamination. The water samples were analyzed by Cold Vapor Atomic Absorption Spectroscopy to quantify Hg, and Inductively Coupled Plasma Mass Spectrometry to quantify Cr, Cu, Zn, As, Cd, and Pb. The highest detected metal concentrations were 0.016 ppm of Zn, 0.0014 ppm of As, 0.0005 ppm of Cd, 0.0011 ppm of Pb, and 0.0023 ppm of Hg. Although national standard values are not exceeded, there are risks to human health due to bioaccumulation from chronic exposure through contaminated water and food. In addition, nitrate levels ranging from 4 to 8.5 mg/L in the dry period and from 3.2 to 7.8 mg/L in the rainy period were found. These concentrations are close to the maximum allowed limit. The average for fecal coliform count was 900 MPN/100 ml, represent high risks to human health.

Keywords: coliforms, nitrates, toxic metals, drinking-water, Yucatán.

Article Details

How to Cite
ROSAS-SÁNCHEZ, Daniel et al. Water quality in the karstic coastal municipality of Hunucmá, Yucatán, México. Risks to human health. Medical Research Archives, [S.l.], v. 12, n. 9, sep. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5780>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v12i9.5780.
Section
Research Articles

References

1. Pabón S.E., Benítez R., Sarria Villa R. A., Gallo J.A. (2020). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Entre Ciencia e Ingeniería 2020, 14 (27), 9-18.

2. Singh N., Kumar D., Sahu A. (2007). Arsenic in the environment: eff ects on human health and possible prevention. J Environ Biol 28(2 Suppl): 359–365.

3. Martin S., Griswold W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens. 2009;(15):1–6.

4. Rehman, K., Fatima, F., Waheed, I., Akash, M.S.H. (2017). Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018 Jan;119(1):157-184. doi: 10.1002/jcb.26234. Epub 2017 Aug 2. PMID: 2864 3849.

5. Saikat, M., Arka, J. C., Abu, M. T., Talha, B. E., Firzan N., Ameer, K., Abubakr, M. I., Mayeen, U. K., Hamid O., Fahad, A. A., Jesus, S. G. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, Journal of King Saud University – Science, Volume 34, Issue 3, 2022, 101865, ISSN 1018-3647, https://doi.org/10.1016/j.jksus.2022.101865.

6. Balali-Mood M., Naseri K., Tahergorabi Z., Khazdair M.R., Sadeghi M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021 Apr 13;12: 643972. doi: 10.3389/fphar.202 1.643972. PMID: 33927623; PMCID: PMC8078867.

7. Jaishankar, M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014 Jun;7(2):60-72. doi: 10.2478/intox-2014-0009. Epub 2014 Nov 15. PMID: 26109881; PMCID: PMC4427717.

8. Covarrubias S.A., Peña J.J. (2017). Contaminación ambiental por metales pesados en México: Problemáticas y estrategias de fitorremediación. Int. Contam. Ambie. 2017, 33, 7-21.

9. Liu J., Wu J., Rong S., Xiong, Y., Teng, Y. (2022). Groundwater Vulnerability and Groundwater Contamination Risk in Karst Area of Southwest China. Sustainability 2022, 14, 14483. https://doi.org/10.3390/su142114483

10. Bauer Gottwein, P., Gondwe, B., Charvet, G., Marín, L., Rebolledo-Vieyra, M. and Merediz-Alonso, G. (2011). Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J., 19 (3), 507–524. doi: 10.1007/s10040-010-0699-5. Springer-Verlag.

11. Liao, H.W., Jiang, Z.C., Zhou, H., Qin, X.Q., Huang, Q.B., Zhong, L., Pu Z.G. (2022). Dissolved Heavy Metal Pollution and Assessment of a Karst Basin around a Mine, Southwest China. Int J Environ Res Public Health. 2022 Nov 1;19(21):14293. doi: 10.3390/ijerph192114293. PMID: 36361169; PMCID: PMC9654374.

12. Purushotham, D., Rashid, M., Lone, M.A. et al., (2013). Environmental impact assessment of air and heavy metal concentration in groundwater of Maheshwaram watershed, ranga reddy district, Andhra Pradesh. J Geol Soc India 81, 385–396 (2013). https://doi.org/10.1007/s12594-013-0049-z

13. Aguilar-Duarte, Y., Bautista F., Mendoza M. E., Frausto O., Ihi T., and Delgado C. (2016). Ivaky: Index of Vulnerability to Pollution of Yucatecan Karstic Aquifer.” Revista Mexicana de Ingeniería Química 15 (3): 913–933. doi:10.24275/rmiq/IA1081.

14. Hu Y., Zhang W., Chen G., Hefa Ch., Tao S. (2018). Public health risk of trace metals in fresh chicken meat products on the food markets of a major production region in southern China, Environmental Pollution, volume 234, pag. 667-676, 2018, issn = 0269-7491, doi: https://doi.org/10.1016/j.envpol.2017.12.006, https://www.sciencedirect.com/science/article/pii/S0269749117334759

15. Miclean M., Cadar O., Levei E.A., Roman R., Ozunu A., Levei L. (2019). Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows. Int J Environ Res Public Health. 2019 Oct 23;16(21):4064. doi: 10.3390/ijerph1621 4064. PMID: 31652702; PMCID: PMC6862208.

16. Data Mexico, 2020. Gobierno de México. Hunucmá. https://www.economia.gob.mx/datamexico/es/profile/geo/hunucma#education-and-employment

17. Omar, D.T. (2021). Desarrollo de un método analítico para determinar mercurio total en agua subterránea. Tesis de Licenciatura: Mérida, Yucatán., 2021.

18. DOF (2022). NORMA Oficial Mexicana NOM-127-SSA1-2021, Agua para uso y consumo humano. Límites permisibles de la calidad del agua. https://www.dof.gob.mx/nota_detalle.php?codigo=5650705&fecha=02/05/2022#gsc.tab=0

19. WHO (2022). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. ISBN 978-92-4-004506-4

20. Moore, W. S., Joye, S. B. (2021). Saltwater Intrusion and Submarine Groundwater Discharge: Acceleration of Biogeochemical Reactions in Changing Coastal Aquifers. Frontiers in Earth Science, Vol. 9, 2021.
https://www.frontiersin.org/articles/10.3389/feart.2021.600710. DOI=10.3389/feart.2021.600710

21. USEPA (2023). United States Environment Protection Agency. National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

22. Greer, F. R., Shannon M. (2005). American Academy of Pediatrics Committee on Nutrition; American Academy of Pediatrics Committee on Environmental Health. Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics. 2005 Sep;116(3):784-6. doi: 10.1542/peds.2005-1497. PMID: 16140723.

23. Long D. T., Pearson Amber L., Voice Thomas C., Polanco-Rodríguez Angel G., Sanchez-Rodríguez E. Cuauhtemoc, Xagoraraki Irene, Concha-Valdez Fanny G., Puc-Franco Miguel, Lopez-Cetz Rafael, Rzotkiewicz Amanda T. (2018). Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico. Applied Geochemistry, Volume 98, 2018, Pages 265-277, ISSN 0883-2927,
https://doi.org/10.1016/j.apgeochem.2018.09.020. https://www.sciencedirect.com/science/article/pii/S0883292718302841

24. Vucinic, L., O'Connell, D., Teixeira, R., Coxon, C., Gill, L. (2022). Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems. Water Resour Res. 2022 May;58(5): e2021WR029840. doi: 10.102 9/2021WR029840. Epub 2022 Apr 27. PMID: 35859924; PMCID: PMC9285701.

25. Pacheco Ávila, J., Cabrera Sansores A., Pérez Ceballos R. (2004). Diagnóstico de la calidad del agua subterránea en los sistemas municipales de abastecimiento en el Estado de Yucatán, México Ingeniería, vol. 8, núm. 2, mayo-agosto, 2004, pp. 165-179 Universidad Autónoma de Yucatán Mérida, México.

26. Arcega-Cabrera F., Sickman J. O., Fargher L., Herrera-Silveira, L. D., Oceguera-Vargas I., Lamas-Cosío E., Robledo-Ardila P. A. (2021). Groundwat J.er Quality in the Yucatan Peninsula: Insights from Stable Isotope and Metals Analysis. Groundwater, Volume 59, Issue 6, November/ December 2021, Pages 878-891

27. Aguilar-Duarte, Y., Bautista F., Mendoza M. E., Frausto O., Ihi T., and Delgado C. (2016). Ivaky: Index of Vulnerability to Pollution of Yucatecan Karstic Aquifer.” Revista Mexicana de Ingeniería Química 15 (3): 913–933.
doi:10.24275/rmiq/IA1081.

28. Iván, V., & Madl–Szonyi, J. (2017). State of the art of karst vulnerability assessment: overview, evaluation and outlook. Environmental Earth Science, 76(112). 1-25. https://doi.org/10.1007/s12665-017-6422-2

29. Data México, 2022. Discapacidades por tipo de actividad cotidiana en la población de Hunucmá. https://datamexico.org/es/profile/geo/hunucma#health

30. Wang, C., Pi X., Yin S., Liu, M., Tian, T., Jin, L., Liu, J., Li, Z., Wang, L., Yuan, Z., Wang, Y., Ren, A. (2022). Maternal exposure to heavy metals and risk for severe congenital heart defects in offspring. Environmental Research, Volume 212, Part C, 2022, 113432, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2022.113432.

31. Gorini, F., Muratori, F. & Morales, M.A. (2014). The Role of Heavy Metal Pollution in Neurobehavioral Disorders: a Focus on Autism. Rev J Autism Dev Disord 1, 354–372 (2014). https://doi.org/10.1007/s40489-014-0028-3

32. Rehman, Q., Rehman, K., Akash, M.S.H., 2021. Heavy Metals and Neurological Disorders: From Exposure to Preventive Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham.
https://doi.org/10.1007/978-3-030-66376-6_4

33. Wongsasuluk, P., Chotpantarat, S., Siriwong, W. et al., (2021). Human biomarkers associated with low concentrations of arsenic (As) and lead (Pb) in groundwater in agricultural areas of Thailand. Sci Rep 11, 13896 (2021). https://doi.org/10.1038/s41598-021-93337-y

34. Nunes, M., Leston, S. (2022). Coastal Pollution: An Overview. In: Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T. (eds) Life Below Water. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-98536-7_9

35. Bauer Gottwein, P., Gondwe, B., Charvet, G., Marín, L., Rebolledo-Vieyra, M. and Merediz-Alonso, G. (2011). Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J., 19 (3), 507–524. doi: 10.1007/s10040-010-0699-5. Springer-Verlag.

36. Polanco Rodríguez, A. G., Navarro Alberto J. A., Solorio Sánchez J. S., Mena Rejón G. J., Gómez J. M., and DelValls Casillas T. A. (2015). Contamination by Organochlorine Pesticides in the Aquifer of the Ring of Cenotes in Yucatán, México. Water and Environment Journal, 29 (1): 140–150. doi:10.1111/wej.12080.

37. González Herrera R. A., Albornoz, E. B., Sua I., Sánchez y Pinto I. A., y Osorio Rodríguez J. H. (2018). El acuífero yucateco. Análisis del riesgo de contaminación con apoyo de un Sistema de Información Geográfica. Rev. Int. Contam. Ambie. 34 (4) 667-683, 2018. DOI: 10.20937/RICA.2018.34.04.09

38. Zhai Y, Zheng F, Li D, Cao X, Teng Y. (2022). Distribution, Genesis, and Human Health Risks of Groundwater Heavy Metals Impacted by the Typical Setting of Songnen Plain of NE China. Int J Environ Res Public Health. 2022 Mar 17;19(6):3571. doi: 10.3390/ijerph19063571. PMID: 35329260; PMCID: PMC8955772.

39. Long D. T., Pearson Amber L., Voice Thomas C., Polanco-Rodríguez Angel G., Sanchez-Rodríguez E. Cuauhtemoc, Xagoraraki Irene, Concha-Valdez Fanny G., Puc-Franco Miguel, Lopez-Cetz Rafael, Rzotkiewicz Amanda T. (2018). Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico. Applied Geochemistry, Volume 98, 2018, Pages 265-277, ISSN 0883-2927,
https://doi.org/10.1016/j.apgeochem.2018.09.020. https://www.sciencedirect.com/science/article/pii/S0883292718302841

40. Hoogesteijn Reul, Almira L.., Febles-Patrón, José Luis., & Nava-Galindo, Violeta Amapola. (2015), "La contaminación fecal en cenotes de interés turístico y recreacional del estado de Yucatán." Ingeniería, Vol. 19, núm.3, pp.169-175. ISSN: 166 5-529X. https://www.redalyc.org/articulo.oa?id=46750926004

41. CNA (2021). Comision Nacional del Agua. Programa Hídrico Regional 2021-2024. Región Hidrológica Administrativa Península de Yucatán. pág. 200. https://files.conagua.gob.mx/conagua/generico/PNH/PHR_2021-2024_RHA_XII_Pen%C3%ADnsula_de_Yucat%C3%A1n.pdf

42. Álvarez E., Amado V. J., London W. M. (2021). Precautionary Principle. Oxford Bibliographies, DOI: 10.1093/OBO/9780199756797-0046.

43. Medina Carrillo Lourdes (2022). La Aplicación del Principio Precautorio en México. Editorial Tirant lo Blanch, ISBN: 09788411131254. https://editorial.tirant.com/mex/autorList/lourdes-guadalupe-medina-carrillo-590244