Leishmania parasite arginine deprivation response pathway influences the host macrophage lysosomal arginine sensing machinery
Main Article Content
Abstract
The outcome of infection is greatly influenced by extensive interaction between the metabolic networks of the host and the pathogen. The intracellular protozoan parasite Leishmania donovani causes competition between the host and the parasite for arginine. L. donovani transports arginine via a high-affinity transporter LdAAP3, encoded by two genes LdAAP3.1 and LdAAP3.2. Earlier reports show that upon arginine starvation, cultured Leishmania parasites promptly activate an Arginine Deprivation Response (ADR) pathway, resulting in the stoichiometric up-regulation of LdAAP3.2 mRNA, protein and activity. Lysosomes, on the other hand, employ a specific sensor and an arginine-activated amino acid transporter, solute carrier family 38 member 9 (SLC38A9), which monitors intra-lysosome arginine sufficiency and subsequently up-regulates cellular mTOR kinase activity. The present study investigates the interaction between Leishmania and macrophage-lysosome arginine sensing machinery. We demonstrate that infection with L. donovani activates SLC38A9 arginine sensing in the human monocyte like-macrophage cell line (THP-1) under physiological concentrations of arginine (0.1 mM). However, THP-1 cells infected with LdAAP3.2 null mutants grown in 0.1 mM arginine exhibited reduced expression of SLC38A9 and mTOR. These results indicate that inside the host macrophage, Leishmania overcome low arginine levels by up regulating the transport of arginine via LdAAP3 and SLC38A9 signalling. Furthermore, while LdAAP3.2 null mutants were impaired in their ability to develop inside THP- 1 macrophage, their infectivity and intracellular growth were restored in SLC38A9 silenced macrophages. This study provides the first identification of regulatory role of SLC38A9 in the expression and function of LdAAP3.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Assche T Van, Deschacht M, Inocêncio da Luz R, Maes L, Cos P. Leishmania-macrophage interactions: Insights into the redox biology. Free Radical Biology and Medicine. 2011; 51(2): 337-351. doi:10.1016/j.freeradbiomed.2011.05.011.
3. Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Asta VD. Arginine transport in human monocytic leukemia THP-1 cells during macrophage differentiation. Journal of Leukocyte Biology. 2011; 90(2). doi:10.1189/jlb.0910510.
4. Buerger C, DeVries B and Stambolic V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochemical and Biophysical Research Communications. 2006; 344(3). doi:10.1016/j.bbrc.2006.03.220.
5. Chaparro V, Leroux LP, Masvidal L, Lorent J, Graber TE, Zimmermann A et al. Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- And eIF4A-sensitive immune-related transcripts. PLoS Pathogens. 2020; 16(6). doi:10.1371/journal.ppat.1008291.
6. Chen Z, Wang T, Liu Z, Zhang G, Wang J, Feng S, Liang J. Inhibition of autophagy by MiR-30A induced by Mycobacteria tuberculosis as a possible mechanism of immune escape in human macrophages. Japanese Journal of Infectious Diseases. 2015; 68(5). doi:10.7883/yoken.JJID.2014.466.
7. Colotti, G. and Ilari, A. Polyamine metabolism in Leishmania: From arginine to trypanothione. Amino Acids. 2011; 40(2):269-85. doi:10.1007/s00726-010-0630-3.
8. Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, Zilberstein D. Arginine homeostasis and transport in the human pathogen Leishmania donovani. Journal of Biological Chemistry. 2009; 284(30) :19800-7. doi:10.1074/jbc.M901066200.
9. Dibble, C.C. and Manning, B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biology. 2013; 15(6):555-64. doi:10.1038/ncb2763.
10. Ezenyia I, Madan E, Singhal J, Jain R, Chakrabarti A, Ghousepeer GD. Screening of traditional medicinal plant extracts and compounds identifies a potent anti-leishmanial diarylheptanoid from Siphonochilus aethiopicus. Journal of Biomolecular Structure and Dynamics. 2024; 42(5):2449-2463. Doi:10.1080/07391102.2023.2212779
11. Fairlamb AH and Cerami A. Metabolism and functions of trypanothione in the kinetoplastida. Annual Review of Microbiology. 1992; 46:695-729. doi:10.1146/annurev.mi.46.100192.003403.
12. Goldman-Pinkovich A, Balno C, Strasser R, Zeituni-Molad M, Bendelak K, Rentsch D. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion. PLoS Pathogens. 2016; 12(4). doi:10.1371/journal.ppat.1005494.
13. Goldman-Pinkovich A, Kannan S, Nitzan-Koren R, Puri M, Pawar H, Bar-Avraham Y. Sensing host arginine is essential for leishmania parasites intracellular development. mBio. 2020; 11(5). doi:10.1128/mBio.02023-20.
14. Gregory DJ and Olivier M. Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology. 2005; 130 doi:10.1017/S0031182005008139.
15. Jewell JL, Russell RC and Guan KL. Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology. 2013; 14(3). doi:10.1038/nrm3522.
16. Jung J, Genau HM and Behrends C. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Molecular and Cellular Biology. 2015; 35(14). doi:10.1128/mcb.00125-15.
17. Kühnel M, Anes E and Griffiths G. Isolation of latex bead-and mycobacteria-containing phagosomes. Cell Biology, 2006; Four-Volume Set. doi:10.1016/B978-012164730-8/50080-0.
18. Mandal A, Das S, Roy S, Ghosh AK, Sardar AH, Verma S et al. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway. PLoS Neglected Tropical Diseases, 2016; 10(1). doi:10.1371/journal.pntd.0004373.
19. Mandal A, Das S, Kumar A, Roy S, Verma S, Ghosh AK, Singh R et al. L-Arginine uptake by cationic amino acid transporter promotes intra- macrophage survival of Leishmania donovani by enhancing arginase-mediated polyamine synthesis. Frontiers in Immunology. 2017; 8(JUL). doi:10.3389/fimmu.2017.00839.
20. McConville MJ. Metabolic Crosstalk between Leishmania and the Macrophage Host. Trends in Parasitology. 2016; 32(9): 666-668. doi:10.1016/j.pt.2016.05.005.
21. Olive AJ and Sassetti CM. Metabolic crosstalk between host and pathogen: Sensing dapting and competing. Nature Reviews Microbiology. 2016; 14(4):221-34 doi:10.1038/nrmicro.2016.12.
22. Pawar H, Puri M, Weinberger RF, Madhubala R, Zilberstein D. The arginine sensing and transport binding sites are distinct in the human pathogen Leishmania. PLoS Neglected Tropical Diseases. 2019; 13(4). doi:10.1371/journal.pntd.0007304.
23. Rebsamen, M, Pochini L, Stasyk T, de Araújo 3 MEG, Galluccio M, Kandasamy RK. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015; 519(7544). doi:10.1038/nature14107.
24. Ren W, Rajendran R, Zhao Y, Tan B, Wu G, Bazer FW. Amino acids as mediators of metabolic cross talk between host and pathogen. Frontiers in Immunology. 2018; 27:9:319. doi:10.3389/fimmu.2018.00319.
25. Saito K, Araki Y, Kontani K, Nishina H, Katada T. Novel role of the small GTPase Rheb: Its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. Journal of Biochemistry. 2005; 137(3). doi:10.1093/jb/mvi046.
26. Shen, K. and Sabatini, D.M. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115(38). doi:10.1073/pnas.1811727115.
27. Showkat M, Beigh MA and Andrabi KI. mTOR Signaling in Protein Translation Regulation: Implications in Cancer Genesis and Therapeutic Interventions. Molecular Biology International. 2014; 115(38):9545-9550 doi:10.1155/2014/686984.
28. da Silva MFL and Floeter-Winter LM. Arginase in Leishmania. Sub-Cellular Biochemistry, 2014; 74:103-17. doi:10.1007/978-94-007-7305-9_4.
29. Singh AK, Pandey RK, Siqueira-Neto JL, Kwon YJ, Freitas-Junior LH, Shaha C, Rentala Madhubala R. Proteomic-based approach to gain insight into reprogramming of THP-1 cells exposed to Leishmania donovani over an early temporal window. Infection and Immunity. 2015; 83(5): 1853-68. doi:10.1128/IAI.02833-14.
30. Singh AK, Pandey RK, Shaha C, Madhubala R. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy. 2016; 12(10). 1817-1831. doi:10.1080/15548627.2016.1203500.
31. Thomas SA, Nandan D, Kass J, Reine NE. Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania. Journal of Biological Chemistry. 2018; 293(7). doi:10.1074/jbc.M117.808675.
32. Wanasen N and Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunologic Research. 2008;41(1):15-25. doi:10.1007/s12026-007-8012-y.
33. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015; 347(6218). doi:10.1126/science.1257132.
34. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME. The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to mTORC1. Science. 2015; 347(6218): 188-94. doi: 10.1126/science.1257132
35. Weinstein SL, Finn AJ, Davé SH, Meng F, Lowell CA, Sanghera JS, DeFranco AL. Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-β. Journal of Leukocyte Biology, 2000; 67(3): 405-14. doi:10.1002/jlb.67.3.405.
36. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016; 351(6268): 43-8. doi:10.1126/science.aab2674.
37. Wu G and Morris SM. Arginine metabolism: Nitric oxide and beyond. Biochemical Journal. 1998; Nov 15;336 (Pt1) (Pt1):1-17. doi:10.1042/bj3360001.
38. Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV. mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell 2017; 171(3) :642-654.e12 doi:10.1016/j.cell.2017.09.046.
39. Xie J and Proud CG. Signaling crosstalk between the mTOR complexes. Translation. 2014; 2(1): e28174. doi:10.4161/trla.28174.
40. Xu, H. and Ren, D. Lysosomal physiology. Annual Review of Physiology, 2015;77: 57-80. doi:10.1146/annurev-physiol-021014-071649.
41. Yang Q, Inoki K, Kim E, Guan KL. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(18): 6811-6. doi:10.1073/pnas.0602282103.
42. Zhang N, Prasad S, Huyghues Despointes CE, Young J, Kima PE. Leishmania parasitophorous vacuole membranes display phosphoinositides that create conditions for continuous Akt activation and a target for miltefosine in Leishmania infections. Cellular Microbiology. 2018;20(11). doi:10.1111/cmi.12889.
43. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science. 2011; 334(6056): 678-83. doi:10.1126/science.1207056.
44. Zoncu R, Efeyan A and Sabatini DM. MTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology. 2011. 12(1):21-35. doi:10.1038/nrm3025.