Water drinking test in patients with advanced-terminal stage glaucoma and maximal topical hypotensive therapy

Main Article Content

Eva de los Ángeles Medina Marcos A. Geria Javier F. Casiraghi

Abstract

Objective: To assess the impact of the water drinking test (WDT) on intraocular pressure (IOP) in advanced-terminal stage glaucoma patients, treated with maximal topical hypotensive therapy.


Method: This retrospective clinical study included patients with advanced or end-stage open-angle glaucoma, with or without prior glaucoma surgery and medication. Participants underwent the WDT, where they consumed 1 liter of water over 5 minutes. IOP was measured at baseline, and then at 15-, 30-, and 45-minutes post-administration.


Results: The IOP measurements (mean ± standard deviation) were as follows:baseline: 12.3 ± 2.1 mmHg; at minute 15: 14.8 ± 3.1 mmHg; at minute 30: 16.4 ± 3.3 mmHg and at minute 45: 14.7 ± 2.6 mmHg. A significant increase in IOP was observed at minute 30 compared to baseline (p = 0.01).


Conclusion: Ingesting 1000 ml of water within 5 minutes raises IOP in patients with advanced or end-stage glaucoma and maximal topical hypotensive therapy. Further research is needed to explore the relevance of these findings in medical scenarios requiring significant fluid intake, such as kidney-bladder, prostate, and gynecological ultrasounds.

Keywords: water drinking test, glaucoma, intraocular pressure

Article Details

How to Cite
MEDINA, Eva de los Ángeles; GERIA, Marcos A.; CASIRAGHI, Javier F.. Water drinking test in patients with advanced-terminal stage glaucoma and maximal topical hypotensive therapy. Medical Research Archives, [S.l.], v. 12, n. 11, nov. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5841>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v12i11.5841.
Section
Research Articles

References

1. Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res. 2024; 99:101232. doi: 10.1016/j.preteyeres.2023.101232.
2. Johnstone M, Xin C, Tan J, Martin E, Wen J, Wang RK. Aqueous outflow regulation - 21st century concepts. Prog Retin Eye Res. 2021; 83:100917. doi: 10.1016/j.preteyeres.2020.100917.
3. Englmaier VA, Storp JJ, Leclaire MD, Lahme L, Brücher VC, Biermann J, Diener R, Eter N. Accuracy of Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness in glaucoma diagnosis depending on optic disc size. Graefes Arch Clin Exp Ophthalmol. 2024; 262(6):1899-1910. doi: 10.1007/s00417-024-06375-3.
4. Shen R, Chan LKY, Yip ACW, Chan PP. Applications of optical coherence tomography angiography in glaucoma: current status and future directions. Front Med (Lausanne). 2024; 11:1428850. doi: 10.3389/fmed.2024.1428850.
5. Jin SW, Bouris E, Morales E, Caprioli J. Long-Term Rate of Optic Disc Rim Loss in Glaucoma Patients Measured From Optic Disc Photographs With a Deep Neural Network. Transl Vis Sci Technol. 2024; 13(9):9. doi: 10.1167/tvst.13.9.9.
6. Acosta PCO, de Leon JMS. Correlation of peripapillary retinal nerve fiber layer and macular ganglion cell-inner plexiform layer in early to moderate glaucoma using the Cirrus ® widefield analysis (PanoMap ®). Indian J Ophthalmol. 2024; 72(3):412-416. doi: 10.4103/IJO.IJO_697_23.
7. Huang X, Islam MR, Akter S, Ahmed F, Kazami E, Serhan HA, Abd-Alrazaq A, Yousefi S. Artificial intelligence in glaucoma: opportunities, challenges, and future directions. Biomed Eng Online. 2023; 22(1):126. doi: 10.1186/s12938-023-01187-8.
8. Zhu Y, Salowe R, Chow C, Li S, Bastani O, O'Brien JM. Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection. Bioengineering (Basel). 2024; 11(2):122. doi: 10.3390/bioengineering11020122.
9. McDermott CE, Salowe RJ, Di Rosa I, O'Brien JM. Stress, Allostatic Load, and Neuroinflammation: Implications for Racial and Socioeconomic Health Disparities in Glaucoma. Int J Mol Sci. 2024; 25(3):1653. doi: 10.3390/ijms25031653.
10. Davuluru SS, Jess AT, Kim JSB, Yoo K, Nguyen V, Xu BY. Identifying, Understanding, and Addressing Disparities in Glaucoma Care in the United States. Transl Vis Sci Technol. 2023; 12(10):18. doi: 10.1167/tvst.12.10.18.
11. Obasuyi OC, Yeye-Agba OO, Ofuadarho OJ. Factors limiting glaucoma care among glaucoma patients in Nigeria: A scoping review. PLOS Glob Public Health. 2024; 4(1):e0002488. doi: 10.1371/journal.pgph.0002488.
12. Vision Loss Expert Group of the Global Burden of Disease Study; GBD 2019 Blindness and Vision Impairment Collaborators. Global estimates on the number of people blind or visually impaired by glaucoma: A meta-analysis from 2000 to 2020. Eye (Lond). 2024; 38(11):2036-2046. doi: 10.1038/s41433-024-02995-5.
13. Bragança CP, Torres JM, Soares CPA, Macedo LO. Detection of Glaucoma on Fundus Images Using Deep Learning on a New Image Set Obtained with a Smartphone and Handheld Ophthalmoscope. Healthcare (Basel). 2022; 10(12):2345. doi: 10.3390/healthcare10122345.
14. Nida EK, Bekele S, Geurts L, Vanden Abeele V. Acceptance of a Smartphone-Based Visual Field Screening Platform for Glaucoma: Pre-Post Study. JMIR Form Res. 2021; 5(9):e26602. doi: 10.2196/26602.
15. Li F, Song D, Chen H, Xiong J, Li X, Zhong H, Tang G, Fan S, Lam DSC, Pan W, Zheng Y, Li Y, Qu G, He J, Wang Z, Jin L, Zhou R, Song Y, Sun Y, Cheng W, Yang C, Fan Y, Li Y, Zhang H, Yuan Y, Xu Y, Xiong Y, Jin L, Lv A, Niu L, Liu Y, Li S, Zhang J, Zangwill LM, Frangi AF, Aung T, Cheng CY, Qiao Y, Zhang X, Ting DSW. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection. NPJ Digit Med. 2020 Sep 22;3:123. doi: 10.1038/s41746-020-00329-9. Erratum in: NPJ Digit Med. 2022; 5(1):38. doi: 10.1038/s41746-022-00585-x.
16. Rao DP, Shroff S, Savoy FM, S S, Hsu CK, Negiloni K, Pradhan ZS, P V J, Sivaraman A, Rao HL. Evaluation of an offline, artificial intelligence system for referable glaucoma screening using a smartphone-based fundus camera: a prospective study. Eye (Lond). 2024; 38(6):1104-1111. doi: 10.1038/s41433-023-02826-z.
17. Johnstone M, Xin C, Tan J, Martin E, Wen J, Wang RK. Aqueous outflow regulation - 21st century concepts. Prog Retin Eye Res. 2021; 83:100917. doi: 10.1016/j.preteyeres.2020.100917.
18. Yap TE, Gao Y, Ahmad H, Susanna F, Susanna R, Normando EM, Bloom PA, Cordeiro MF. Comparison of intraocular pressure profiles during the water drinking test and the modified diurnal tension curve. Eye (Lond). 2024; 38(8):1567-1574. doi: 10.1038/s41433-024-02954-0.
19. Leydhecker W. The water-drinking test. Br J Ophthalmol 1950; 34: 457-479.
20. Leydhecker W. Comparative provocative tests in glaucoma. Br J Ophthalmol 1950; 34: 535-544.
21. Campbell DA, Gloster J, Tonks EL. Some observations on the water drinking test in glaucomatous and non-glaucomatous subjects. Br J Ophthalmol 1955; 39: 193-203.
22. Winder AF, Siddiqui AA, Donovan HC. Ocular hypertension and systemic responses to the water-drinking test. Br J Ophthalmol 1978; 62: 414-419.
23. Campbell DA. Diuretics and the eye. Br Med J 1961; 2: 467-474.
24. Roth JA. Inadequate diagnostic value of the water-drinking test. Br J Ophthalmol 1974; 58: 55-61.
25. Susanna R Jr, Clement C, Goldberg I, Hatanaka M. Applications of the water drinking test in glaucoma management. Clin Exp Ophthalmol 2017; 45: 625-631.
26. Özyol P, Özyol E, Baldemir E. Intraocular pressure dynamics with prostaglandin analogs: a clinical application of the water-drinking test. Clin Ophthalmol 2016; 10: 1351-1356.
27. Muñoz CR, Macias JH, Hartleben C. Reproducibilidad de la prueba de sobrecarga hídrica. Arch Soc Esp Oftalmol 2015; 90: 517-521.
28. Razeghinejad MR, Tajbakhsh Z, Nowroozzadeh MH, Masoumpour M. Water drinking test: intraocular pressure changes after tube surgery and trabeculectomy. J Ophthalmic Vis Res 2017; 12: 390-396.
29. Razeghinejad MR, Tajbakhsh Z, Nowroozzadeh MH et al. The water-drinking test revisited: an analysis of test results in subjects with glaucoma. Semin Ophthalmol 2018; 33: 517-524.
30. Prata TS, Dias DT. The water-drinking test and glaucoma progression: considerations regarding the test usefulness as an independent risk assessment tool. J Glaucoma 2018; 27: e25-e26.
31. De Moraes CG, Susanna R Jr, Sakata LM, Hatanaka M. Predictive value of the water drinking test and the risk of glaucomatous visual field progression. J Glaucoma 2017; 26: 767-773.
32. Scoralick ALB, Gracitelli CPB, Dias DT et al. Lack of association between provocative test-based intraocular pressure parameters and functional loss in treated glaucoma patients. Arq Bras Oftalmol 2019; 82: 176-182.
33. Mursch-Edlmayr AS, Luft N, Podkowinski D et al. Differences in optic nerve head blood flow regulation in normal tension glaucoma patients and healthy controls as assessed with laser speckle flowgraphy during the water drinking test. J Glaucoma 2019; 28: 649-654.
34. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000; 130: 429-440.
35. Jin E, Goh CXY, Betzler BK, Heng CP, Ang BCH. Assessing the value of the water drinking test in glaucoma-a systematic review and meta-analysis. Eye (Lond) 2024. doi:10.1038/s41433-024-03107-z
36. Susanna R Jr, Vessani RM, Sakata L et al. The relation between intraocular pressure peak in the water drinking test and visual field progression in glaucoma. Br J Ophthalmol 2005; 89: 1298-1301.
37. Cronemberger S, Nassim C, Vieira Filho HM et al. Provocative tests, functional exams and daily curve of intraocular pressure in glaucoma suspects Vision Pan-America 2012; 11: 80-84.
38. Danesh-Meyer HV, Papchenko T, Tan YW, Gamble GD. Medically controlled glaucoma patients show greater increase in intraocular pressure than surgically controlled patients with the water drinking test. Ophthalmology 2008; 115: 1556-1570.
39. Goulet EDB, Claveau P, Simoneau IL, Deshayes TA, Jolicoeur-Desroches A, Aloui F, Hoffman MD. Repeatability of Ad Libitum Water Intake during Repeated 1 h Walking/Jogging Exercise Sessions Conducted under Hot Ambient Conditions. Nutrients. 2023 Oct 24;15(21):4500. doi: 10.3390/nu15214500.
40. Li S, Xiao X, Zhang X. Association between plain water intake and risk of hypertension: longitudinal analyses from the China Health and Nutrition Survey. Front Public Health. 2024 Jan 9;11:1280653. doi: 10.3389/fpubh.2023.1280653.
41. Carroll HA, Ericson U, Ottosson F, Enhörning S, Melander O. The association between water intake and future cardiometabolic disease outcomes in the Malmö Diet and Cancer cardiovascular cohort. PLoS One. 2024 Jan 19;19(1):e0296778. doi: 10.1371/journal.pone.0296778.
42. Armstrong LE, Bergeron MF, Muñoz CX, Kavouras SA. Low daily water intake profile-is it a contributor to disease? Nutr Health. 2024 Sep;30(3):435-446. doi: 10.1177/02601060241238826.
43. Khil J, Chen QY, Lee DH, Hong KW, Keum N. Water intake and obesity: By amount, timing, and perceived temperature of drinking water. PLoS One. 2024 Apr 25;19(4):e0301373. doi: 10.1371/journal.pone.0301373.
44. Lee JW, Kim Y. Association of plain water intake with self-reported depression and suicidality among Korean adolescents. Epidemiol Health. 2024;46:e2024019. doi: 10.4178/epih.e202401