Factors of the arterial hypertension formation as a phenotype of metabolic syndrome in perimenopause
Main Article Content
Abstract
Introduction. Menopause as a potential risk factor for insulin resistance and associated metabolic and hemodynamic disorders determines the need to study the formation of the perimenopausal metabolic syndrome (MetS) phenotype with arterial hypertension (AH).
Objective: to assess correlations between MetS markers and characteristics of the menopausal transition with their role in hypertension based on the analysis of a perimenopausal normoglycemic cohort.
Patients and methods. Of the 88 women aged 35–59 years, 58 women had hypertension and 30 were normotensive. The following were determined: waist circumference (WC), blood pressure (BP), triglyceride (TG), HDL-C, insulin, follicle-stimulating hormone (FSH), estradiol and glucose levels, TyG, HOMA2-IR indices. The following were estimated (SPSS, version 17): median (25; 75%); intergroup differences according to the Mann-Whitney criterion; comparison of proportions according to Pearson's χ2; Spearman's correlation (R) and partial correlation (Rрс) analyses were performed to level out the influence of age; binary logistic regression was used to identify prognostic factors.
Results. The TyG index correlated age-dependently with FSH (R=0.211; p=0.048) and estradiol (R= -0.262; p=0.014), and age independently with BP, WC, and HDL-C. The associations of WC with BP that are relevant in partial correlation are the closest with TyG (R=0.526 and Rpc=0.424; p<0.001) and HOMA2-IR (R=0.507 and Rpc=0.370; p<0.001), age is dependent on HDL-C, duration of postmenopause and estradiol (R= -0.313; p=0.003). According to the stepwise multiple logistic regression analysis, with an increase in WC by 1 cm, the chance of having hypertension increases by 9%; with an increase in the TyG index by 1 conventional unit - by 16 times.
Conclusion. The ascending hormonal and metabolic trajectory of the components of metabolic syndrome in perimenopause with the central pathogenetic link of insulin resistance emphasizes the importance of factors specific to women and attention to arterial hypertension with its leading role in the cluster.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Meloni A, Cadeddu C, Cugusi L, et al. Gender differences and cardiometabolic risk: the Importance of the risk factors. Int J Mol Sci. 2023;24(2):1588. doi: 10.3390/ijms24021588.
3. Mannozzi J, Massoud L, Stavres J, Al-Hassan MH, O'Leary DS. Altered autonomic function in metabolic syndrome: interactive effects of multiple components. J Clin Med. 2024;13(3):895. doi: 10.3390/jcm13030895.
4. Nilsson PM, Tuomilehto J, Rydén L. The metabolic syndrome - What is it and how should it be managed? Eur J Prev Cardiol. 2019;26(2_ suppl):33-46. doi: 10.1177/2047487319886404.
5. Mishra A, Alam F, Mateen S, Jabeen F, Anjum M, Mamrawala N. Fragmented ventricular complexes and blood pressure variability assessed by ambulatory blood pressure monitoring in patients with metabolic syndrome. Cureus. 2024;16(5): e59950. doi: 10.7759/cureus.59950.
6. Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022;23 (2):786. doi: 10.3390/ijms23020786.
7. Yasin A, Nguyen M, Sidhu A, et al. Liver and cardiovascular disease outcomes in metabolic syndrome and diabetic populations: Bi-directional opportunities to multiply preventive strategies. Diabetes Res Clin Pract. 2024; 211:111650. doi: 10.1016/j.diabres.2024.111650.
8. Garcia-Carretero R, Vazquez-Gomez O, Gil-Prieto R, Gil-de-Miguel A. Insulin resistance is a cardiovascular risk factor in hypertensive adults without type 2 diabetes mellitus. Wien Klin Wochenschr. 2024;136(3-4):101-109. doi: 10.1007/ s00508-023-02278-1.
9. da Silva AA, Do Carmo JM, Li X, Wang Z, Mouton AJ, Hall JE. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Can J Cardiol. 2020;36(5):671–82. doi: 10.1016/j.cjca.2020.02.066.
10. Mancia G, Kreutz R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41(12): 1874-2071. doi: 10.1097/HJH.0000000000003480.
11. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304):957-980. doi: 10.1016/S0140-6736(21)01330-1.
12. Erdoğan K, Sanlier N. Metabolic syndrome and menopause: the impact of menopause duration on risk factors and components. Int J Womens Health. 2024;16:1249-1256. doi: 10.2147/IJWH.S460645.
13. Li S, Tan I, Atkins E, Schutte AE, Gnanenthiran SR. The pathophysiology, prognosis and treatment of hypertension in females from pregnancy to post-menopause: a review. Curr Heart Fail Rep. 2024;21 (4):322-336.doi: 10.1007/s11897-024-00672-y.
14. Stefanska A, Bergmann K, Sypniewska G. Metabolic syndrome and menopause: pathophysiology, clinical and diagnostic significance. Adv Clin Chem. 2015;72:1-75. doi: 10.1016/bs.acc.2015.07.001.
15. Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender differences in insulin resistance: new knowledge and perspectives. Curr Issues Mol Biol. 2023;45(10):7845-7861. doi: 10.3390/cimb45100496.
16. Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of metabolic syndrome and dietary intervention. Int J Mol Sci. 2018;20(1):128. doi: 10.3390/ijms20010128.
17. Tramunt B, Smati S, Grandgeorge N, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63(3):453-461. doi: 10.1007/s00125-019-05040-3.
18. Platek AE, Szymanska A. Metabolic dysfunction-associated steatotic liver disease as a cardiovascular risk factor. Clin Exp Hepatol. 2023;9(3):187-192. doi: 10.5114/ceh.2023.130744.
19. Powell-Wiley TM, Poirier P, Burke LE, et al. American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation. 2021;143(21):e984-e1010. doi: 10.1161/CIR.00000 00000000973.
20. Gutiérrez-Cuevas J, Santos A, Armendariz-Borunda J. Pathophysiological molecular mechanisms of obesity: a link between MAFLD and NASH with cardiovascular diseases. Int J Mol Sci. 2021;22(21):11629. doi: 10.3390/ijms222111629.
21. Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, Stasik K, Filip R. Common denominator of MASLD and some non-communicable diseases. Curr Issues Mol Biol. 2024;46(7):6690-6709. doi: 10.3390/cimb46070399.
22. Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which comes first, nonalcoholic fatty liver disease or arterial hypertension? Biomedicines. 2023;11(9):2465. doi: 10.3390/biomedicines11092465.
23. Moreno-Pérez O, Reyes-García R, Modrego-Pardo I, López-Martínez M, Soler MJ. Are we ready for an adipocentric approach in people living with type 2 diabetes and chronic kidney disease? Clin Kidney J. 2024;17(4):sfae039. doi: 10.1093/ckj/sfae039.
24. Ndumele CE, Rangaswami J, Chow SL, et al. American Heart Association. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association. Circulation. 2023;148(20):1606-1635. doi: 10.1161/CIR.000000 0000001184.
25. Eslam M, Sarin SK, Wong VW, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020;14(6):889-919. doi: 10.1007/s12072-020-10094-2.
26. Vitale E, Rizzo A, Santa K, Jirillo E. Associations between "Cancer Risk", "Inflammation" and "Metabolic Syndrome": a scoping review. Biology (Basel). 2024;13(5):352. doi: 10.3390/biology13050352.
27. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. doi: 10.1186/s12933-018-0762-4.
28. Pascual-Morena C, Cavero-Redondo I, Martínez-García I, et al. Exploring the influence of insulin resistance on arterial stiffness in healthy adults: from the metabolic and cardiovascular health insights of the EVasCu Study. Nutrients. 2024;16(6):791. doi: 10.3390/nu16060791.
29. Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin resistance the hinge between hypertension and type 2 diabetes. High Blood Press Cardiovasc Prev. 2020;27(6):515-526. doi: 10.1007/s40292-020-00408-8.
30. Stanciu S, Rusu E, Miricescu D, et al. Links between metabolic syndrome and hypertension: the relationship with the current antidiabetic drugs. Metabolites. 2023;13(1):87. doi: 10.3390/metabo 13010087.
31. Jeong HG, Park H. Metabolic disorders in denopause. Metabolites. 2022;12(10):954. doi: 10. 3390/metabo12100954.
32. Nappi RE, Chedraui P, Lambrinoudaki I, Simoncini T. Menopause: a cardiometabolic transition. Lancet Diabetes Endocrinol. 2022;10(6): 442-456. doi: 10.1016/S2213-8587(22)00076-6.
33. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004; 27(6):1487-1495. doi: 10.2337/diacare.27.6.1487.
34. Irace C, Carallo C, Scavelli FB, et al. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract. 2013;67(7):665-72. doi: 10.1111/ijcp.12124.
35. Tahapary DL, Pratisthita LB, Fitri NA, et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581. doi: 10.1016/j.dsx.2022.102581.
36. Ruyatkina LA, Ruyatkin DS, Iskhakova IS. Opportunities and options for surrogate assessment of insulin resistance. Obesity and metabolism. 2019;16(1):27-33. (In Russ.) doi: https://doi.org/10.14341/omet10082
37. Khan SH, Sobia F, Niazi NK, Manzoor SM, Fazal N, Ahmad F. Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol Metab Syndr. 2018;10(1):74. doi: 10.11 86/s13098-018-0376-8.
38. Wan H, Cao H, Ning P. Superiority of the triglyceride glucose index over the homeostasis model in predicting metabolic syndrome based on NHANES data analysis. Sci Rep. 2024;14(1):15499. doi: 10.1038/s41598-024-66692-9.
39. Ding X, Wang X, Wu J, Zhang M, Cui M. Triglyceride–glucose index and the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol. 2021;20(1):76. doi: 10.1186/s12933-021-01268-9.
40. Chen Q, Hu P, Hou X, et al. Association between triglyceride-glucose related indices and mortality among individuals with non-alcoholic fatty liver disease or metabolic dysfunction-associated steatotic liver disease. Cardiovasc Diabetol. 2024; 23(1):232.doi: 10.1186/s12933-024-02343-7.
41. Harlow SD, Gass M, Hall JE, et al. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012; 15(2):105-14. doi: 10.3109/13697137.2011.650656.
42. Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21(1):68. doi: 10.1186/ s12933-022-01511-x.
43. Ruyatkina LA, Ruyatkin DS, Shcherbakova LV. Hormonal-metabolic trajectory of menopausal transition in a normoglycemic cohort of women with different blood pressure levels. Medical Research Archives. 2024;12(1). Online Jan 30, 2024. doi: https://doi.org/10.18103/mra.v12i1.4972
44. Tepper PG, Randolph JF Jr, McConnell DS, et al. Trajectory clustering of estradiol and follicle-stimulating hormone during the menopausal transition among women in the Study of Women's Health across the Nation (SWAN). J Clin Endocrinol Metab. 2012;97(8):2872-80. doi: 10.1210/jc.2012-1422.
45. Wang Y, Tang R, Luo M, et al. Follicle stimulating hormone and estradiol trajectories from menopausal transition to late postmenopause in indigenous Chinese women. Climacteric. 2021;2 4(1):80-88. doi: 10.1080/13697137.2020.1775807.
46. Wang X, Ding N, Harlow SD, et al. Associations between exposure to air pollution and sex hormones during the menopausal transition. Sci Total Environ. 2024; 908:168317. doi: 10.1016/j.scitotenv.2023.168317.
47. Grub J, Willi J, Süss H, Ehlert U. The role of estrogen receptor gene polymorphisms in menopausal symptoms and estradiol levels in perimenopausal women - Findings from the Swiss Perimenopause Study. Maturitas. 2024; 183:10794 2. doi: 10.1016/j.maturitas.2024.107942.
48. Grub J, Süss H, Willi J, Ehlert U. Steroid hormone secretion over the course of the perimenopause: findings from the Swiss Perimenopause Study. Front Glob Women’s Health. 2021; 2:774308. doi: 10.3389/fgwh.2021.774308.
49. Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative Randomized Controlled Trial. JAMA. 2002;288(3): 321–333. doi:10.1001/jama.288.3.321.
50. Wu B, Fan B, Qu Y, et al. Trajectories of blood lipids profile in midlife women: does menopause matter? J Am Heart Assoc. 2023;12(22): e030388. doi: 10.1161/JAHA.123.030388.
51. Li L, Pi YZ, Zhang H, et al. Association of follicle-stimulating hormone with bone turnover markers and bone mineral density in Chinese women across the menopausal transition. J Clin Lab Anal. 2023;37(9-10): e24899. doi: 10.1002/ jcla.24899.
52. Wang N, Shao H, Chen Y, et al. Follicle-Stimulating Hormone, its association with cardiometabolic risk factors, and 10-year risk of cardiovascular disease in postmenopausal women. J Am Heart Assoc. 2017;6(9): e005918. doi: 10.1161/JAHA.117.005918.
53. Wang N, Li Q, Han B, et al. Follicle-stimulating hormone is associated with non-alcoholic fatty liver disease in Chinese women over 55 years old. J Gastroenterol Hepatol. 2016;31(6):1196-202. doi: 10.1111/jgh.13271.
54. Wu S, Matthews KA, Brooks MM, et al. Trajectories of blood pressure in midlife women: does menopause matter? Circ Res. 2022;130(3): 312-322. doi: 10.1161/CIRCRESAHA.121.319424.
55. Cheng Y, Zhu H, Ren J, et al. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets. Nat Commun. 2023;1 4(1):6991. doi: 10.1038/s41467-023-42801-6.
56. Xu C, He Z, Song Y, Shao S, Yang G, Zhao J. Atypical pituitary hormone-target tissue axis. Front Med. 2023;17(1):1-17. doi: 10.1007/s11684-022-0973-7.
57. Li Y, Zheng M, Limbara S, et al. Effects of the pituitary-targeted gland axes on hepatic lipid homeostasis in endocrine-associated fatty liver disease-a concept worth revisiting. J Clin Transl Hepatol. 2024;12(4):416-427. doi: 10.14218/JCTH .2023.00421.
58. Zeng J, Zhang T, Yang Y, et al. Association between a metabolic score for insulin resistance and hypertension: results from National Health and Nutrition Examination Survey 2007-2016 analyses. Front Endocrinol (Lausanne). 2024; 15:1369600. doi: 10.3389/fendo.2024.1369600.
59. Niu ZJ, Cui Y, Wei T, et al. The effect of insulin resistance in the association between obesity and hypertension incidence among Chinese middle-aged and older adults: data from China health and retirement longitudinal study (CHARLS). Front Public Health. 2024; 12:1320918. doi: 10.3389/ fpubh.2024.1320918.
60. Tikhonoff V, Casiglia E, Gasparotti F, Spinella P. The uncertain effect of menopause on blood pressure. J Hum Hypertens. 2019;33(6):421-428. doi: 10.1038/s41371-019-0194-y.
61. Ibraheem Shelash Al-Hawary S, Ali Alzahrani A, et al. The association of metabolic syndrome with telomere length as a marker of cellular aging: A systematic review and meta-analysis. Front Genet. 2024; 15:1390198. doi: 10.3389/fgene.2024.1390198.
62. Guo Y, Zhao M, Bo T, et al. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res. 2019;29 (2):151-166. doi: 10.1038/s41422-018-0123-6.
63. Song Y, Wang ES, Xing LL, et al. Follicle-Stimulating Hormone induces postmenopausal dyslipidemia through inhibiting hepatic cholesterol metabolism. J Clin Endocrinol Metab. 2016;101(1): 254-63. doi: 10.1210/jc.2015-2724.
64. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640-5. doi: 10.1161/CIRCULATIONAHA.109.192644.
65. Lonardo A, Carani C, Carulli N, Loria P. 'Endocrine NAFLD' a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J Hepatol. 2006;44(6):1196-207. doi: 10.1016/j.jhep. 2006.03.005.
66. Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol. 2024;29(1):101133. doi: 10.1016/j.aohep.2023.101133.
67. Raj H, Durgia H, Palui R, et al. SGLT-2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: A systematic review. World J Diabetes. 2019;10(2):114-132. doi: 10.4239/wjd. v10.i2.114.
68. Saponaro C, Gaggini M, Gastaldelli A. Nonalcoholic fatty liver disease and type 2 diabetes: common pathophysiologic mechanisms. Curr Diab Rep. 2015;15(6):607. doi: 10.1007/s11892-015-0607-4.
69. Castillo-Núñez Y, Almeda-Valdes P, González-Gálvez G, Arechavaleta-Granell MDR. Metabolic dysfunction-associated steatotic liver disease and atherosclerosis. Curr Diab Rep. 2024;24(7):158-166. doi: 10.1007/s11892-024-01542-6.
70. De Paoli M, Zakharia A, Werstuck GH. The Role of estrogen in insulin resistance: A review of clinical and preclinical data. Am J Pathol. 2021;191 (9):1490-1498. doi: 10.1016/j.ajpath.2021.05.011.
71. Fenton A. Weight, shape, and body composition changes at menopause. J Midlife Health. 2021;12 (3):187-192. doi: 10.4103/jmh.jmh_123_21.
72. Minh HV, Tien HA, Sinh CT, et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J Clin Hypertens (Greenwich). 2021;23(3):529-537. doi: 10.1111/jch.14155.
73. Arpón A, Milagro FI, Santos JL, García-Granero M, Riezu-Boj JI, Martínez JA. Interaction among sex, aging, and epigenetic processes concerning visceral fat, insulin resistance, and dyslipidaemia. Front Endocrinol (Lausanne). 2019; 10:496. doi: 10.3389/fendo.2019.00496.
74. Ramalingam S, Kar AK, Senthil R. Comparison of triglyceride/glucose index and related parameters with Indian Diabetes Risk Score assessment in non-diabetic individuals visiting primary healthcare centre -A community-based cross-sectional study. J Family Med Prim Care. 2024;13(1):235-242. doi: 10.4103/jfmpc.jfmpc_996_23.
75. Shan S, Li S, Lu K, et al. Associations of the Triglyceride and glucose index with hypertension stages, phenotypes, and their progressions among middle-aged and older Chinese. Int J Public Health. 2023; 68:1605648. doi: 10.3389/ijph.2023.1605648.
76. Bazyar H, Zare Javid A., Masoudi MR, et al. Assessing the predictive value of insulin resistance indices for metabolic syndrome risk in type 2 diabetes mellitus patients. Sci Rep. 2024;14(1): 8917. doi: 10.1038/s41598-024-59659-3.
77. de Cuevillas B, Alvarez-Alvarez I, Riezu-Boj JI, Navas-Carretero S, Martinez JA. The hypertriglyceridemic-waist phenotype as a valuable and integrative mirror of metabolic syndrome traits. Sci Rep. 2021;11(1):21859. doi: 10.1038/s41598-021-01343-x.
78. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—A new world‐wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469-80. doi: 10.1111/j.1464-5491.2006.01858. x.
79. Hu L, Huang X, You C, et al. Prevalence and risk factors of prehypertension and hypertension in southern China. PLoS One. 2017;12(1):e0170238. doi: 10.1371/journal.pone.0170238.
80. Borges LD, Comini LO, de Oliveira LC, et al. Hypertriglyceridemic waist phenotype and associated factors in individuals with arterial hypertension and/or diabetes mellitus. J Nutr Sci. 2021;10: e74. doi: 10.1017/jns.2021.71.
81. Fenton A, Smart C, Goldschmidt L, Price V, Scott J. Fat mass, weight and body shape changes at menopause - causes and consequences: a narrative review. Climacteric. 2023;26(4):381-387. doi: 10.1080/13697137.2023.2178892.
82. Xuan Y, Shen Y, Wang S, et al. The association of hypertriglyceridemic waist phenotype with hypertension: A cross-sectional study in a Chinese middle aged-old population. J Clin Hypertens (Greenwich). 2022;24(2):191-199. doi: 10.1111/ jch.14424.
83. Hou Y, Yang S. Association of risk factors for high blood pressure across 46 low- and middle-income countries: A multi-country cross-sectional analysis. J Glob Health. 2024; 14:04087. doi: 10.7189/jogh.14.04087.
84. Seto H, Toki H, Kitora S, Oyama A, Yamamoto R. Seasonal variations of the prevalence of metabolic syndrome and its markers using big-data of health check-ups. Environ Health Prev Med. 2024; 29:2. doi: 10.1265/ehpm.23-00216.
85. Jang SY, Kim J, Kim S, Lee ES, Choi EJ. [Impact of anthropometric indices of obesity on the risk of incident hypertension in adults with prehypertension: A secondary analysis of a cohort study]. J Korean Acad Nurs. 2024;54(1):18-31. doi: 10.4040/jkan.23067.
86. Torun C, Ankaralı H, Caştur L, et al. Prediction of visceral adipose tissue magnitude using a new model based on simple clinical measurements. Front Endocrinol (Lausanne). 2024; 15:1411678. doi: 10.3389/fendo.2024.1411678.
87. Janghorbani M, Salamat MR, Aminorroaya A, Amini M. Utility of the visceral adiposity index and hypertriglyceridemic waist phenotype for predicting incident hypertension. Endocrinol Metab (Seoul). 2017;32(2):221-229. doi: 10.3803/EnM.2017.32.2.221.
88. Gui J, Li Y, Liu H, et al. Obesity- and lipid-related indices as a predictor of obesity metabolic syndrome in a national cohort study. Front Public Health. 2023; 11:1073824. doi: 10.3389/fpubh.20 23.1073824.
89. Kohrt WM, Wierman ME. Preventing fat gain by blocking follicle-stimulating hormone. N Engl J Med. 2017;377(3):293-295. doi: 10.1056/NEJMcib r1704542.
90. Rodriguez de Morales YA, Abramson BL. Cardiovascular and physiological risk factors in women at mid-life and beyond. Can J Physiol Pharmacol. 2024;102(8):442-451. doi: 10.1139/ cjpp-2023-0468.
91. Liu X, Xu J, Wei D, Chen Y. Associations of serum follicle-stimulating hormone and luteinizing hormone levels with fat and lean mass during menopausal transition. Obes Facts. 2023;16(2):18 4-193. doi: 10.1159/000528317.
92. Japar KV, Hariyanto TI, Mardjopranoto MS. Relationship between phenotype models based on waist circumference and triglyceride levels and the risk of chronic kidney disease: A systematic review and meta-analysis. J Obes Metab Syndr. 2023; 32(3):236-246. doi: 10.7570/jomes23037.
93. Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation. 2000;102(2):179-84. doi: 10.1161/01. cir.102.2.179.
94. Sánchez-García A, Rodríguez-Gutiérrez R, Mancillas-Adame L, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: a systematic review. Int J Endocrinol. 2020; 2020:4678526. doi: 10.1155/2020/4678526.
95. Lopez-Jaramillo P, Gomez-Arbelaez D, Martinez-Bello D, et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): a prospective cohort study. Lancet Healthy Longev. 2023;4(1):e23-e33. doi: 10.1016/S2666-7568(22)00247-1.
96. Yin JL, Yang J, Song XJ, et al. Triglyceride-glucose index and health outcomes: an umbrella review of systematic reviews with meta-analyses of observational studies. Cardiovasc Diabetol. 2024;23(1):177. doi: 10.1186/s12933-024-02241-y.
97. Wang Y, Yang W, Jiang X. Association between triglyceride-glucose index and hypertension: a meta-analysis. Front Cardiovasc Med. 2021; 8:644035. doi:10.3389/fcvm.2021.644035.
98. Nayak SS, Kuriyakose D, Polisetty LD, et al. Diagnostic and prognostic value of triglyceride glucose index: a comprehensive evaluation of meta-analysis. Cardiovasc Diabetol. 2024;23(1): 310. doi: 10.1186/s12933-024-02392-y.
99. Yang C, Song Y, Wang P. Relationship between triglyceride-glucose index and new-onset hypertension in general population-a systemic review and meta-analysis of cohort studies. Clin Exp Hypertens. 2024;46(1):2341631. doi: 10.1080/ 10641963.2024.2341631.
100. Serné EH, Ijzerman RG, de Jongh RT, Stehouwer CD. Blood pressure and insulin resistance: role for microvascular function? Cardiovasc Res. 2002;55(2):418–19. doi: https://doi.org/10.1016/S0008-6363(02)00436-4 .
101. Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021; 119:154766. doi: 10.10 16/j.metabol.2021.154766.
102. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial stiffness and cardiovascular risk in hypertension. Circ Res. 2021; 128 (7):864–86. doi: 10.1161/CIRCRESAHA.121.318061.
103. Wu S, Xu L, Wu M, Chen S, Wang Y, Tian Y. Association between triglyceride-glucose index and risk of arterial stiffness: a cohort study. Cardiovasc Diabetol. 2021;20(1):146. doi: 10.1186 /s12933-021-01342-2.
104. Safar ME. Arterial stiffness as a risk factor for clinical hypertension. Nat Rev Cardiol. 2018;15(2) :97–105. doi: 10.1038/nrcardio.2017.155.
105. Yan Y, Wang D, Sun Y, et al. Triglyceride-glucose index trajectory and arterial stiffness: results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovasc Diabetol. 2022;21(1):33. doi: 10.1186/s12933-022-01453-4.
106. Jia G, Sowers JR. Hypertension in diabetes: an update of basic mechanisms and clinical disease. Hypertension. 2021;78(5):1197-1205.doi:10.1161/ HYPERTENSIONAHA.121.17981.
107. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991-1006. doi: 10.1161/CIRCRESAHA .116.305697.
108. Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med. 2003;20(4):255-68. doi: 10.1046/j.1464-549 1.2003.00869. x.
109. Briant LJ, Charkoudian N, Hart EC. Sympathetic regulation of blood pressure in normotension and hypertension: when sex matters. Exp Physiol. 2016;101(2):219-29. doi: 10.1113/ EP085368.
110. O'Donnell E, Floras JS, Harvey PJ. Estrogen status and the renin angiotensin aldosterone system. Am J Physiol Regul Integr Comp Physiol. 2014;307(5):R498-500. doi: 10.1152/ajpregu.00182.2014.
111. Gersh FL, O'Keefe JH, Lavie CJ, Henry BM. The Renin-angiotensin-aldosterone system in postmenopausal women: the promise of hormone therapy. Mayo Clin Proc. 2021;96(12):3130-3141. doi: 10.1016/j.mayocp.2021.08.009.
112. Caturano A, Galiero R, Vetrano E, et al. Insulin-heart axis: bridging physiology to insulin resistance. Int J Mol Sci. 2024;25(15):8369. doi: 10.3390/ijms25158369.
113. Fernandes Silva L, Vangipurapu J, Laakso M. The "common soil hypothesis" revisited-risk factors for type 2 diabetes and cardiovascular disease. Metabolites. 2021;11(10):691. doi: 10.339 0/metabo11100691.
114. Ruyatkina LA, Ruyatkin DS, Iskhakova IS, Scherbakova LV. Possibilities to assess insulin resistance as the metabolic syndrome is clustered in women in postmenopause. Meditsinskiy sovet = Medical Council. 2019;(4):88-93. (In Russ.) doi: https://doi.org/10.21518/2079-701X-2019-4-88-93 .
115. Lin CH, Wei JN, Fan KC, et al. Different cutoffs of hypertension, risk of incident diabetes and progression of insulin resistance: a prospective cohort study. J Formos Med Assoc. 2022;121(1 Pt 1):193-201. doi: 10.1016/j.jfma.2021.02.022.
116. Rattanatham R, Tangpong J, Chatatikun M, et al. Assessment of eight insulin resistance surrogate indexes for predicting metabolic syndrome and hypertension in Thai law enforcement officers. PeerJ. 2023;11: e15463. doi: 10.7717/peerj.15463.
117. Shahid I, Avenatti E, Titus A, Al-Kindi S, Nasir K. Primary prevention of cardiovascular disease in women. Methodist Debakey Cardiovasc J. 2024;20(2):94-106. doi: 10.14797/mdcvj.1313.
118. Chen Y, Wang C, Sun B, et al. Associations of follicle-stimulating hormone and luteinizing hormone with metabolic syndrome during the menopausal transition from the National Health and Nutrition Examination Survey. Front Endocrinol (Lausanne). 2023; 14:1034934. doi: 10.3389/fendo.2023.1034934.
119. Dines VA, Garovic VD. Menopause and chronic kidney disease. Nat Rev Nephrol. 2024;20(1):4-5. doi: 10.1038/s41581-023-00717-w.
120. Afonso-Alí A, Porrini E, Teixido-Trujillo S, et al. The role of gender differences and menopause in obesity-related renal disease, renal inflammation and lipotoxicity. Int J Mol Sci. 2023;24(16):12984. doi: 10.3390/ijms241612984.
121. Guldan M, Unlu S, Abdel-Rahman SM, et al. Understanding the role of sex hormones in cardiovascular kidney metabolic syndrome: toward personalized therapeutic approaches. J Clin Med. 2024;13(15):4354. doi: 10.3390/jcm13154354.
122. Petramala L, Gigante A, Sarlo F, et al. Relevance of obesity-related organ damage and metabolic syndrome classification in cardiovascular and renal risk stratification in patients with essential hypertension. Front Cardiovasc Med. 2024; 11:1369090. doi: 10.3389/fcvm.2024.1369090.
123. El Khoudary SR, Aggarwal B, Beckie TM, et al. Menopause transition and cardiovascular disease risk: implications for timing of early prevention: A Scientific Statement from the American Heart Association. Circulation. 2020;142(25):e506-e532. doi: 10.1161/CIR.0000000000000912.
124. Wang D, Li W, Zhou M, et al. Association of the triglyceride-glucose index variability with blood pressure and hypertension: a cohort study. QJM. 2024;117(4):277-282. doi: 10.1093/qjmed/hcad252.
125. Mijangos-Trejo A, Gómez-Mendoza R, Ramos-Ostos MH, et al. Diagnostic accuracy of the Triglyceride-Glucose Index (TyG), TyG Body Mass Index, and TyG Waist Circumference Index for liver steatosis detection. Diagnostics (Basel). 2024;14(7) :762. doi: 10.3390/diagnostics14070762.
126. Xin F, He S, Zhou Y, Jia X, Zhao Y, Zhao H. The triglyceride glucose index trajectory is associated with hypertension: a retrospective longitudinal cohort study. Cardiovasc Diabetol. 2023;22(1):347. doi: 10.1186/s12933-023-02087-w.