An Illustrated Explanation of the Lower Limit of Cerebral Autoregulation and the Clinical Significance of Its Monitoring during Cardiac Surgery

Main Article Content

Benjamin Gavish, PhD Jochen Steppan

Abstract

Autoregulation of cerebral blood flow is a vital function that guarantees that cerebral blood flow is being maintained over a wide range of blood pressure values. The matching between cerebral blood flow and the cerebral metabolic requirements involves vasodilation/constriction of the cerebral arterioles in response to decrease/increase of the cerebral perfusion pressure, respectively. The lower limit of cerebral autoregulation is defined as the mean arterial pressure below which cerebral blood flow becomes pressure passive. Keeping blood pressure within the cerebral autoregulatory range for patients undergoing cardiac surgery has been shown to improve postoperative outcomes. The objective of this article is to summarize the results of recent studies that may enable us to estimate the lower limit of cerebral autoregulation to reduce the risk of cerebral hypoperfusion.

Article Details

How to Cite
GAVISH, Benjamin; STEPPAN, Jochen. An Illustrated Explanation of the Lower Limit of Cerebral Autoregulation and the Clinical Significance of Its Monitoring during Cardiac Surgery. Medical Research Archives, [S.l.], v. 12, n. 11, nov. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5862>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v12i11.5862.
Section
Research Articles

References

1. Clarke DD, Sokoloff L (1999) Regulation of cerebral metabolic rate. In: Siegel GJ, Agranoff BW, Albers RW (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia.
2. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.
3. Tzeng YC, Ainslie PN. Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 2014; 114:545–559.
4. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978 Apr;234(4):H371-83. doi: 10.1152/ajpheart.1978.234.4.H371. PMID: 645875.
5. Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med. 2011;2011:823525.
6. Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Smielewski P, Brady KM, Czosnyka M. Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol. 2012;113:307–314.
7. Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.
8. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20:129.
9. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flowin humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021 Oct 1;101(4):1487-1559. doi: 10.1152/physrev.00022.2020. Epub 2021 Mar 26. PMID:33769101; PMCID: PMC8576366.
10. Rickards CA, Tzeng YC. Arterial pressure and cerebral blood flow variability: friend or foe? A review. Front Physiol. 2014 Apr 7;5:120. doi: 10.3389/fphys.2014.00120. PMID: 24778619; PMCID: PMC3985018.
11. Ono M, Brady K, Easley RB, Brown C, Kraut M, Gottesman RF, Hogue CW. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg. 2014;147:483–489.
12. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010 Sep;41(9):1951-6. doi:10.1161/strokeaha.109.575159. Epub 2010 Jul 22. PMID:20651274; PMCID: PMC5544901.
13. Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. British Journal of Anaesthesia, Volume 132, Issue 6, 1260 – 1273.
14. Taylor K. The hemodynamics of cardiopulmonary bypass. Sem Thorac Cardiovasc Surg. 1990;2:300–12.
15. Schell R, Kern F, Greeley W, Schulman S, Frasco P, Croughwell N, Newman M, Reves J. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth Analg. 1993; 76:849–865.
16. Moraca R, Lin E, Holmes J IV, Fordyce D, Campbell W, Ditkoff M, Hill M, Gutyon S, Paull D, Hall R. Impaired baseline regional cerebral perfusion in patients referred for coronary artery bypass. J Thorac Cardiovasc Surg. 2006; 131:540–546.
17. Gottesman R, Sherman P, Grega M, Yousem D, Borowicz LJ, Selnes O, Baumgartner W, McKhann G. Watershed strokes after cardiac surgery: Diagnosis, etiology, and outcome. Stroke. 2006; 37:2306–2311.
18. Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, Gottesman RF, Hogue CW. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg. 2012 Mar;114(3):503-10. doi:10.1213/ane.0b013e31823d292a. Epub 2011 Nov 21. PMID: 22104067; PMCID: PMC3288415.
19. Tripathi A, Obata Y, Ruzankin P, Askaryar N, Berkowitz DE, Steppan J, Barodka V. A Pulse Wave Velocity Based Method to Assess the Mean Arterial Blood Pressure Limits of Autoregulation in Peripheral Arteries. Front Physiol. 2017;8:855.
20. Steppan J, Hogue CW Jr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014;28(4):429-39.
21. Smielewski P, Kirkpatrick P, Minhas P, Pickard JD, Czosnyka M. Can cerebrovascular reactivity be measured with near-infrared spectroscopy? Stroke. 1995; 26:2285–92.
22. Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel S, Marsch S, Pargger H, Steiner L. Cerebral perfusion in sepsis-associated delirium. Crit Care Med. 2008; 12:R63. Epub 2008 May 5.
23. Czosnyka M, Smielewski P, Kirkpatrick P, Menon D. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996; 27:1829–34.
24. Obata Y, Barodka V, Berkowitz DE, Gottschalk A, Hogue CW, Steppan J. Relationship between the ambulatory arterial stiffness index and the lower limit of cerebral autoregulation during cardiac surgery. J Am Heart Assoc 2018; 7:e007816.
25. Gavish B, Gottschalk A, Hogue CW, Steppan J. Additional predictors of the lower limit of cerebral autoregulation during cardiac surgery. J Hypertens. 2023 Nov 1;41(11):1844-1852. doi: 10.1097/HJH.0000000000003556. Epub 2023 Sep 14. PMID: 37702558; PMCID: PMC10552816.
26. Li Y, Wang JG, Dolan E, Gao PJ, Guo HF, Nawrot T, et al. Ambulatory arterial stiffness index derived from 24-h ambulatory blood pressure monitoring. Hypertension 2006;47:359–364.
27. Dolan E, Thijs L, Li Y, Atkins N, McCormack P, McClory S, O'Brien E, Staessen JA, Stanton AV. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension. 2006 Mar;47(3):365-70. doi:10.1161/01.HYP.0000200699.74641.c5. Epub 2006 Jan 23. PMID: 16432047.
28. Zhang S, Tamargo RJ, Bergmann J, Gottschalk A, Steppan J. The relationship between intraoperative surrogates of vascular stiffness, cerebral aneurysms, and surgical outcomes. J Stroke Cerebrovasc Dis. 2024 Sep 7;33(11):108003.
29. Gavish B, Ben-Dov IZ, Kark JD, Mekler J, Bursztyn M. The association of a simple blood pressure-independent parameter derived from ambulatory blood pressure variability with short-term mortality. Hypertens Res 2009; 32:488–495.
30. von Eye A. Symmetric regression. In: von Eye A, Schuster C (eds), Regression Analysis for Social Sciences. Academic Press: San Diego, 1998, 209–233.
31. Gavish B. Repeated blood pressure measurements may probe directly an arterial property. [abstract] In: Abstract Book. American Journal of Hypertension 2000; 13 (part 2 B012):190A–191A.
32. Gavish B, Izzo JL Jr. Arterial stiffness: going a step beyond. Am J Hypertens 2016;29:1223–1233.