A based-rule fuzzy expert system to estimate the response to treatments in multiple sclerosis patients

Main Article Content

Edgar Rafael Ponce de León Sánchez Jorge Domingo Mendiola Santibañez Omar Arturo Domínguez Ramírez Martín Gallegos Duarte Ana Marcela Herrera Navarro Horacio Senties Madrid José Jonathan Franco Téllez

Abstract

Background: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) that affects about 2.9 million people worldwide. Current disease-modifying therapies are focused on delaying the disease progression, treating sensitive attacks, and improving symptoms. However, some patients partially respond or do not respond to MS treatments. So, it is important to determine the degree of response of patients to treatments.


Methods: Expert systems are computer programs that attempt to emulate the reasoning process of some skills of a human expert. A fuzzy expert system incorporates fuzzy logic into its reasoning process to manage uncertain and imprecise information that a binary system could not. So, a based-rule fuzzy expert system based on the Takagi–Sugeno–Kang Fuzzy System (TSKFS) model is proposed to estimate the degree of response to different types of drugs such as Gelenia, Tysabri, Avonex, Betaferon, and Rebif in 60 MS patients, using clinical patient information derived from neurological examinations as input variables.


Results: The results of the proposed fuzzy expert system to estimate the response to MS treatments in MS patients show a high efficiency (100%) compared with conventional classification methods such as the K-Means clustering model (62%).


Conclusion: Expert systems are efficient tools for classifying the response to MS treatments and can support the decision of specialists to prescribe the most appropriate therapy for the individual patient.

Keywords: Multiple sclerosis (MS), Fuzzy expert system, Takagi–Sugeno–Kang Fuzzy System (TSKFS), Treatment response estimation, Disease-modifying therapies, Neurological examinations, MS drug response, Clinical decision support, K-Means clustering model, Autoimmune disease

Article Details

How to Cite
SÁNCHEZ, Edgar Rafael Ponce de León et al. A based-rule fuzzy expert system to estimate the response to treatments in multiple sclerosis patients. Medical Research Archives, [S.l.], v. 12, n. 9, sep. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5863>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.18103/mra.v12i9.5863.
Section
Research Articles

References

1. Hauser, S. L., & Cree, B. A. (2020). Treatment of multiple sclerosis: a review. The American journal of medicine. 2020; 133(12):1380-1390.

2. Torkildsen, Ø., Myhr, K. M., Bø, L. Disease‐modifying treatments for multiple sclerosis–a review of approved medications. European journal of neurology. 2016; 23:18-27.

3. Cohan, S.L., Hendin, B.A., Reder, A.T., Smoot, K., Avila, R., Mendoza, J.P., Weinstock-Guttman, B. Interferons and multiple sclerosis: Lessons from 25 years of clinical and real-world experience with intramuscular interferon beta-1a (Avonex). CNS Drugs. 2021; 35:743-767.

4. Meskó B, Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit Med. 2020; 3:126.

5. Law, M. T., Traboulsee, A. L., Li, D. K., Carruthers, R. L., Freedman, M. S., Ko-lind, S. H., and Tam, R. (2019). Machine learning in secondary progressive multiple sclerosis: an improved predictive model for short-term disability progression. Multiple Sclerosis Journal–Experimental, Translational and Clinical, 5(4):2055217319885983.

6. Afzal HMR, Luo S, Ramadan S, Lechner-Scott J. The emerging role of artificial intelligence in multiple sclerosis imaging. Multiple Scler J. 2022; 28:849–58.

7. Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023; 388:1201–8.

8. Ponce de Leon-Sanchez, E. R., Mendiola-Santibañez, J. D., Dominguez-Ramirez, O. A., Herrera-Navarro, A. M., Vazquez-Cervantes, A., Jimenez-Hernandez, H., Senties-Madrid, H. (2024). Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations. Technologies, 12(9), 145.

9. Casalino, G., Castellano, G., Consiglio, A., Nuzziello, N., and Vessio, G. (2021). MicroRNA expression classification for pediatric multiple sclerosis identification. Journal of Ambient Intelligence and Humanized Computing, 1–10.

10. Chen, X., Hou, H., Qiao, H., Fan, H., Zhao, T., and Dong, M. (2021). Identification of blood-derived candidate gene markers and a new 7-gene diagnostic model for multiple sclerosis. Biological Research, 54(1), 1–12.

11. Ponce de Leon-Sanchez, E. R., Dominguez-Ramirez, O. A., Herrera-Navarro, A. M., Rodriguez-Resendiz, J., Paredes-Orta, C., Mendiola-Santibañez, J. D. (2023). A deep learning approach for predicting multiple sclerosis. Micromachines, 14(4), 749.

12. Fagone, P., Mazzon, E., Mammana, S., Di Marco, R., Spinasanta, F., Basile, M. S., Petralia, M. C., Bramanti, P., Nicoletti, F., and Mangano, K. (2019). Identification of cd4+ t cell biomarkers for predicting the response of patients with relapsing-remitting multiple sclerosis to natalizumab treatment. Molecular medicine reports, 20(1):678–684.

13. Ebrahimkhani, S., Beadnall, H. N., Wang, C., Suter, C. M., Barnett, M. H., Buc-kland, M. E., and Vafaee, F. (2020). Serum exosome micrornas predict multiple sclerosis disease activity after fingolimod treatment. Molecular Neurobiology, 57:1245–1258.

14. Giordani, P., Ferraro, M. B., Martella, F., Giordani, P., Ferraro, M. B., Martella, F. (2020). Non-Hierarchical Clustering. An Introduction to Clustering with R, 75-109.

15. Vichi, M., Cavicchia, C., Groenen, P. J. (2022). Hierarchical means clustering. Journal of Classification, 39(3), 553-577.

16. Eshaghi, A., Young, A. L., Wijeratne, P. A., Prados, F., Arnold, D. L., Narayanan, S., Ciccarelli, O. (2021). Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nature communications, 12(1), 2078.

17. Zelilidou, S. P., Tripoliti, E. E., Vlachos, K. I., Konitsiotis, S., & Fotiadis, D. I. (2021, October). Clustering based Segmentation of MR Images for the Delineation and Monitoring of Multiple Sclerosis Progression. In 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 1-4). IEEE.

18. Maida, E., Abbadessa, G., Cocco, E., Valentino, P., Lerede, A., Frau, J., ... & Bonavita, S. (2024). Identifying definite patterns of unmet needs in patients with multiple sclerosis using unsupervised machine learning. Neurological Sciences, 1-13.

19. Chaves, B., e Silva, J. C. S., Nakaya, H., Almeida, M., Bucciarelli, F., Lacouture, C., ... & Dupré, L. (2024). Morphological profiling of T cells predicts clinical response to VLA-4-targeting natalizumab therapy in patients with multiple sclerosis.

20. Liang, X., Yan, Z., & Li, Y. (2024). Exploring subtypes of multiple sclerosis through unsupervised machine learning of automated fiber quantification. Japanese Journal of Radiology, 1-9.

21. Saibene, A., Assale, M., & Giltri, M. (2021). Expert systems: Definitions, advantages and issues in medical field applications. Expert Systems with Applications, 177, 114900.

22. Ponce de Leon-Sanchez, E. R., Mendiola-Santibañez, J. D., Dominguez-Ramirez, O. A., Herrera-Navarro, A. M., Vazquez-Cervantes, A., Jimenez-Hernandez, H., Senties-Madrid, H. (2023). Fuzzy Logic System for Classifying Multiple Sclerosis Patients as High, Medium, or Low Responders to Interferon-Beta. Technologies, 11(4), 109.

23. Ayangbekun, O.; Jimoh~Ibrahim, A. Fuzzy logic application to brain diseases diagnosis. J. Emerg. Trends Comput. Inf. Sci. 2015; 6:144-148.

24. Hosseini, A.; Asadi, F.; Arani, L.A. Development of a knowledge-based clinical decision support system for multiple sclerosis diagnosis. J. Med. Life. 2020; 13:612.

25. Hamedan, F., Orooji, A., Sanadgol, H., & Sheikhtaheri, A. (2020). Clinical decision support system to predict chronic kidney disease: A fuzzy expert system approach. International journal of medical informatics, 138, 104134.

26. Matinfar, F.; Golpaygani, A.T. A fuzzy expert system for early diagnosis of multiple sclerosis. J. Biomed. Phys. Eng. 2022; 12:181.

27. Chen, J., & Gustientiedina, G. (2024). Implementation of Fuzzy Expert System to Detect Parkinson's Disease Based on Mobile. Journal of Applied Business and Technology, 5(2), 72-81.

28. Muslim, A. M., Mashohor, S., Al Gawwam, G., Mahmud, R., binti Hanafi, M., Alnuaimi, O., Almutairi, A. D. Brain MRI dataset of multiple sclerosis with consensus manual lesion segmentation and patient meta information. Data in Brief. 2022; 42:108139.

29. Kandel, A. Fuzzy expert systems. CRC press. 1991.

30. Kandel, A., & Langholz, G. Fuzzy control systems. CRC press. 1993.

31. Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D. Theory and applications of ordered fuzzy numbers: a tribute to Professor Witold Kosiński. Springer Nature. 2017.