Adapted faecal clinical scoring systems for post-weaning diarrhea due to enterotoxigenic Escherichia coli and swine dysentery due to Brachyspira hyodysenteriae

Main Article Content

Frédéric ACJ Vangroenweghe James Mark Hammer

Abstract

Swine production globally still has major challenges with swine intestinal disease, which might be provoked by post-weaning diarrhea or growing pig diarrhea. The major etiological agent of post-weaning diarrhea is enterotoxigenic Escherichia coli, characterized by the presence of both fimbriae (adhesins; mainly F4 (previously known as K88) and F18) and the presence of enterotoxins (thermostable toxin a and b; thermolabile toxin). Piglets affected with post-weaning diarrhea have mild to severe watery diarrhea, dehydration, and retarded growth which may lead to mortality. In contrast, growing pig diarrhea has, besides several viral and parasitic causes, three major bacterial causes, namely Lawsonia intracellularis, Brachyspira species or Salmonella species. Swine dysentery is provoked by Brachyspira hyodysenteriae and leads to mild to severe diarrhea which can be associated with addition of mucus, fibrin, necrotic material, or blood into the faeces. Ileitis caused by Lawsonia intracellularis causes mild to severe diarrhea with or without melena. Depending on the clinical presentation, low mortality with sudden death may be observed. In contrast, Salmonella is ubiquitous and clinical signs may be different depending on serotype or caused by dysbiosis. Both under field and experimental conditions, the assessment of severity of swine intestinal disease remains a challenge. Many studies only report presence or absence of diarrhea without further differentiation of specific severity ranging from mild to severe faecal appearance. Therefore, a need for standardized scoring to evaluate and analyze results of treatment and prevention is crucial. Based on three published field studies, we discuss the importance of a standardized faecal clinical scoring system adapted to a specific pathogenic challenge, namely enterotoxigenic Escherichia coli or Brachyspira hyodysenteriae. For enterotoxigenic Escherichia coli, a post-weaning diarrhea faecal clinical scoring based on a score grid from 0 to 4 is applied, to differentiate between normal, pasty, mild, moderate, and severe diarrhea. For Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella species a more differentiated approach is necessary considering the different possible faecal additions (mucus, blood, fibrin, necrotic material). The swine dysentery faecal clinical scoring system, therefore, includes 3 sub criteria shape-consistency, colour, and additions, which are scored separately and subsequently combined into a total faecal score. Using both scoring systems, several statistical analyses can be performed ranging from kinetics over time, area under the curve, days to maximum score, and in case of individual piglet faecal clinical scoring number of piglets with diarrhea on a particular observation day can be assessed. These analyses are used to compare different intervention strategies in 3 field experiments. They are vaccination against enterotoxigenic Escherichia coli using an oral live avirulent Escherichia coli F4/F18 vaccine in the prevention of post-weaning diarrhea due to enterotoxigenic Escherichia coli, inclusion of a β-mannanase enzyme to degrade β-mannans in the diet, and therapeutic treatment with an oral Zn-chelate product to treat clinical signs of swine dysentery. In conclusion, adapted faecal clinical scoring systems for different swine intestinal diseases or phases of production can be an important tool in both field and experimental studies to objectively assess the severity of swine intestinal disease and make an evidence-based evaluation of clinical effects following therapeutic or preventive interventions.

Keywords: faecal clinical score, score grid, enterotoxigenic Escherichia coli, Brachyspira hyodysenteriae, evaluation

Article Details

How to Cite
VANGROENWEGHE, Frédéric ACJ; HAMMER, James Mark. Adapted faecal clinical scoring systems for post-weaning diarrhea due to enterotoxigenic Escherichia coli and swine dysentery due to Brachyspira hyodysenteriae. Medical Research Archives, [S.l.], v. 12, n. 10, oct. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5875>. Date accessed: 22 dec. 2024. doi: https://doi.org/10.18103/mra.v12i10.5875.
Section
Review Articles

References

1. Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Heal Res Rev 2005, 6, 17-39.

2. Hoa, N.X.; Kalhoro, D.H.; Lu, C. Distribution of serogroups and virulence genes of E. coli strains isolated from porcine post weaning diarrhea in Thua Thien Hue province Vietnam. Tạp chí Công ngh Sinh học 2013, 11, 665-672.

3. Lyutskanov, M. Epidemiological characteristics of post-weaning diarrhea associated with toxin-producing Escherichia coli in large intensive pig farms. Trakia J Sci 2011, 9, 68-73.

4. Alvarez-Ordóñez, A.; Martinez-Lobo, F.J.; Arguello, H.; Carvajal, A.; Rubio, P. Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease. Int J Environ Res Public Health 2013, 10, 1927-1947.

1. Hampson, D.J.; Lugsomya, K.; La, T.; Phillips, N.D.; Trott, D.J.; Abraham, S. Antimicrobial resistance in Brachyspira – an increasing problem for disease control. Vet Microbiol 2019, 229, 59-71.

2. Hampson, D.J. Brachyspiral colitis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schartz KJ, Stevenson GW, editors. Diseases of Swine. 10th ed. Chichester: Wiley-Blackwell. 2012, 680-696.

3. Amaechi, N.; Ezeronye, O.U. Piggery environment as a source of Salmonella contamination for swine. J Anim Vet Adv 2006, 5, 102-107.

4. Barber, D.A.; Bahnson, P.B.; Isaacson, R.; Jones, C.J.; Weigel, R.M. Distribution of Salmonella in swine production ecosystems. J Food Prot 2002, 65, 1861-1868.

5. Karuppannan, A.K.; Opriessnig, T. Lawsonia intracellularis: Revisiting the Disease Ecology and Control of This Fastidious Pathogen in Pigs. Front Vet Sci 2018, 5, 181-187.

6. McOrist, S.; Gebhart, C.J. Proliferative enteropathy. In: Zimmerman JJ, Karriker LA, Ramirez A, Schartz KJ, Stevenson GW, editors. Diseases of Swine. 10th ed. Chichester: Wiley-Blackwell. 2012, 811-820.

7. Svensmark, B.; Jorsal, S.E.; Nielsen, K.; Willeberg, P. Epidemiological studies of piglet diarrhoea in intensively managed Danish sow herds. I. Pre-weaning diarrhoea. Acta Vet Scand 1989, 30, 43-53.

8. Svensmark, B.; Nielsen, K.; Willeberg, P.; Jorsal, S.E. Epidemiological studies of piglet diarrhea in intensively managed Danish sow herds. II. Post-weaning diarrhea. Acta Vet Scand 1989, 30, 55-62.

9. Tubbs, R.C.; Hurd, H.S.; Dargatz, D.; Hill, G. Preweaning morbidity and mortality in the United States swine herd. Swine Heal Prod 1993, 1, 21-28.

10. USDA. Part II. Reference of Swine Health and Health Management in the United States. USDA:APHIS:VS, CEAH, National Animal Health Monitoring System, Fort Collins, CO. 2002, vol. #N355.0202.

11. Zhang, W.; Zhao, M.; Ruesch, L.; Omot, A.; Francis, D. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol 2007, 123, 145-152.

12. Fairbrother, J.M.; Gyles, C.L. Colibacillosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schartz KJ, Stevenson GW, editors. Diseases of Swine. 10th ed. Chichester: Wiley-Blackwell. 2012, p. 723-749.

13. Chen, X.; Gao, S.; Jiao, X.; Liu, X.F. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhoea in eastern China. Vet Microbiol 2004, 103, 13-20.

14. Frydendahl, K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet Microbiol 2002, 85, 169-182.

15. Luppi, A.; Gibellini, M.; Gin, T.; Vangroenweghe, F.; Vandenbroucke, V.; Bauerfeind, R.; Bonilauri, P.; Labarque, G.; Hidalgo, Á. Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhea in Europe. Porcine Health Manag 2016, 2, 20-25.

16. Vu-Khac, H.; Holoda, E.; Pilipcinec, E.; Blanco, M.; Blanco, J.E.; Mora, A.; Dahbi, G.; Lopéz, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhoea in Slovakia. BMC Vet Res 2006, 2, 13-20.

17. Abraham, S.; Trott, D.J.; Jordan, D.; Gordon, D.M.; Groves, M.D.; Fairbrother, J.M.; Smith, M.G.; Zhang, R.; Chapman, T.A. Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia. Int J Antimicrob Agents 2014, 44, 105-111.

18. Abraham, S.; Jordan, D.; Wong, H.S.; Johnson, J.R.; Toleman, M.A.; Wakeham, D.L.; Gorden, D.M.; Turnidge, J.D.; Mollinger, J.L.; Gibson, J.S.; Trott, D.J. First detection of extended-spectrum cephalosporin- and fluoroquinoloneresistant Escherichia coli in Australian food-producing animals. J Glob Antimicrob Resist 2015, 3, 273-277.

19. Boyen, F.; Vangroenweghe, F.; Butaye, P.; De Graef, E.; Castryck, F.; Heylen, P.; Vanrobaeys, M.; Haesebrouck, F. Disk prediffusion is a reliable method for testing colistin susceptibility in porcine E. coli strains. Vet Microbiol 2010, 144, 359-362.

20. Jahanbakhsh, S.; Smith, M.G.; Kohan-Ghadr, H.R.; Letellier, A.; Abraham, S.; Trott, D.J.; Fairbrother, J.M. Dynamics of extended-spectrum cephalosporin resistance in pathogenic Escherichia coli isolated from diseased pigs in Quebec, Canada. Int J Antimicrob Agents 2016, 48, 194-202.

21. Luppi, A.; Bonilauri, P.; Dottori, M.; Gherpelli, Y.; Biasi, G.; Merialdi, G.; Maioli, G.; Martelli, P. Antimicrobial resistance of F4+ Escherichia coli isolated from swine in Italy. Transbound Emerg Dis 2013, 62, 67-71.

22. Mahu, M.; Pasmans, F.; Vranckx, K.; De Pauw, N.; Van de Maele, L.; Vyt, P.; Vandersmissen, T.; Martel, A.; Haesebrouck, F.; Boyen, F. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes. Vet Microbiol 2017, 207, 125-132.

23. Duinhof, T.F.; Dierickx, C.M.; Koene, M.G.J.; van Bergen, M.A.P.; Mevius, D.J.; Veldman, K.T.; van Beers-Schreurs, H.M.G.; de Winne, R.T.J.A. Multiresistentie bij Brachyspira hyodysenteriae-isolaten op een varkensvermeerderingsbedrijf in Nederland. Tijdschr Diergeneesk 2008, 133, 604-608.

24. Hidalgo, A.; Carvajal, A.; Vester, B.; Pringle, M.; Naharro, G.; Rubio, P. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain. Antimicrob Ag Chemother 2011, 55, 3330-3337.

25. Joerling, J., Barth, S.A.; Schlez, K.; Willems, H.; Herbst, W.; Ewers, C. Phylogenetic diversity, antimicrobial susceptibility and virulence gene profiles of Brachyspira hyodysenteriae isolates from pigs in Germany. PlosOne 2018, 13, e0190928.

26. Karlsson, M.; Aspán, A.; Landén, A.; Franklin, A. Further characterization of porcine Brachyspira hyodysenteriae isolates with decreased susceptibility to tiamulin. J Med Microbiol 2004, 53, 281-285.

27. Kirchgässner, C.; Schmitt, S.; Borgström, A.; Wittenbrink, M.M. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland. Schweiz Arch Tierheilk 2016, 158, 405-410.

28. Lobová, D.; Smola, J.; Čížek, A. Decreased susceptibility to tiamulin and valnemulin among Czech isolates of Brachyspira hyodysenteriae. J Med Microbiol 2004, 53, 287-291.

29. Massacci, F.R.; De Luca, S.; Cucco, L.; Tentellini, M.; Perreten, V.; Pezzotti, G.; Magistrali, C.F. Multiresistant Brachyspira hyodysenteriae shedding by pigs during the fattening period. Vet Rec 2018. https://doi.org/10.1136/vr.104886.

30. Fonseco Pascoal, L.A.F.; Thomaz, M.C.; Watanabe, P.H.; dos Santos Ruiz, U.; Bertocco Ezequiel, J.M.; Borges Amorim, A.; Daniel, E.; Iselda Masson, G.C. Fiber sources in diets of newly weaned piglets. Rev Bras Zootec 2012, 41, 636-642.

31. Liu, G.; Guan, G.; Fang, J.; Martinez, Y.; Chen, S.; Bin, P.; Duraepandiyan, V.; Gong, T.; Tossou, M.C.B.; Al-Dhabi, N.A.; Yin, Y. Macleaya cordata extract decreased diarrhea score and enhanced intestinal barrier function in growing piglets. BioMed Res Int 2016, 1069595. https://doi.org/10.1155/2016/1069585.

32. Madec, F.; Bridoux, N.; Bounaix, S.; Cariolet, R.; Duval-Iflah, Y.; Hampson, D.J.; Jestin, A. Experimental models of porcine post-weaning colibacillosis and their relationship to post-weaning diarrhoea and digestive disorders as encountered in the field? Vet Microbiol 2000, 72, 295-310.

33. Girard, M.; Thanner, S.; Pradervand, N.; Hu, D.; Ollagnier, C.; Bee, G. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: Efficacy on an experimental ETEC F4 model. PlosOne 2018, 13, e0197878.

34. Zhao, P.; Li, H.; Lei, Y.; Li, T.; Kim, S.; Kim, I. Effect of fermented medicinal plants on growth performance, nutrient digestibility, fecal noxious gas emissions, and diarrhea score in weanling pigs. J Sci Food Agric 2016, 96, 1269-1274.

35. Fairbrother, J.M.; Nadeau, E.; Bélanger, L.; Tremblay, C.-L.; Tremblay, D.; Brunelle, M.; Wolf, R.; Hellmann, K.; Hidalgo, A. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs. Vaccine 2017, 35, 353-360.

36. Nadeau, E.; Fairbrother, J.M.; Zentek, J.; Bélanger, L.; Tremblay, D.; Tremblay, C.-L.; Röhe, I.; Vahjen, W.; Brunelle, M.; Hellmann, K.; Cvejíc, D.; Brunner, B.; Schneider, C.; Bauer, K.; Wolf, R.; Hidalgo, A. Efficacy of a single oral dose of a live bivalent E. coli vaccine against post-weaning diarrhea due to F4 and F18-positive enterotoxigenic E. coli. Vet J 2017, 226, 32-39.

37. Vangroenweghe, F.; Thas, O. Improved piglet performance and reduced antibiotic use following oral vaccination with a live avirulent Escherichia coli F4 vaccine against post-weaning diarrhea. J Clin Res Med 2020, 3, 1-8.

38. Vangroenweghe, F; Thas, O. Application of high energy and protein diets in combination with a live avirulent Escherichia coli F4 vaccine against post-weaning diarrhea. Vacc Res 2020, 7, 1-9.

39. Vangroenweghe, F.; Poulsen, K.; Thas, O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Manag 2021, 7, 8-19.

40. Tran, T.H.T.; Everaert, N.; Bindelle, J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J Anim Physiol Anim Nutr (Berl) 2018, 102, 17-32.

41. Daudeling, J.-F.; Lessard, M.; Beaudoin, F.; Nadeau, E.; Bissonnette, N.; Boutin, Y.; Brousseau, J.-P.; Lauzon, K.; Fairbrother, J.M. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs. Vet Res 2011, 42, 69-79.

42. Vangroenweghe, F.; Allais, L.; Van Driessche, E.; van Berkel, R.; Lammers, G.; Thas, O. Evaluation of a zinc chelate on clinical swine dysentery under field conditions. Porcine Health Manag 2022, 6, 1-10.

43. Jackson, M.E.; Anderson, D.M.; Hsiao, H.Y.; Mathis, G.F.; Fodge, D.W. Beneficial effect of β-mannanase feed enzyme on performance of chicks challenged with Eimeria sp. And Clostridium perfringens. Av Dis 2003, 47, 759-763.