Public Policy and Lessons from Immunity in a COVID World
Main Article Content
Abstract
To counter perceived viral threats, government organizations have the task of steering public opinion towards behavior that shapes the immunity of the population. This could take the form of vaccine campaigns and/or ‘non-pharmaceutical interventions’. Vaccines are accepted as the most effective means in thwarting the severity of an infection both individually and throughout a population. The success or failure of campaigns however hinges on the messaging of the objectives, public trust, and above all the science that substantiates the campaign. Some consider the recent Coronavirus Disease 2019 Pandemic as one insufficient in clear and consistent messages. At the level of communication, confusion stemmed from the complexities of 1) asymptomatic and presymptomatic transmission, 2) the merits of natural and acquired immunity, 3) The relevance of herd or community immunity, as well as 4) correct information regarding the benefits and risks of necessary vaccination. Here, we review the basis and inconsistencies in the therapeutic and infection messages relevant to immunity concepts that lent to public confusion associated with this and perhaps future pandemics.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Sayama Y, Okamoto M, Saito M, et al. Seroprevalence of four endemic human coronaviruses and, reactivity and neutralization capability against SARS-CoV-2 among children in the Philippines. Sci Rep 2023;13:2310. doi: 10.1038/s41598-023-29072-3.
3. Mendoza RU, Hartigan-Go KY, Brillantes AB, Ruiz KEV, Baysic IS, Valenzuela SA. Public policy (not the coronavirus) should shape what endemic means. J Glob Health 2022;12:03050:10.7189/jogh.12.03050.
4. Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci 2014;369:20130433. doi: 10.1098/rstb.2013.0433. Print 2014.
5. Rodrigues CMC, Plotkin SA. Impact of Vaccines; Health, Economic and Social Perspectives. Front Microbiol 2020;11:1526.:10.3389/fmicb.2020.01526. eCollection 2020.
6. Koenig R, Savani MM, Lee-Whiting B, et al. Public support for more stringent vaccine policies increases with vaccine effectiveness.
7. Conti AA. Vaccination through time: from the first smallpox vaccine to current vaccination campaigns against the COVID-19 pandemic. Acta Biomed 2021;92:e2021453. doi: 10.23750/abm.v92iS6.12211.
8. Smith PJ, Wood D, Darden PM. Highlights of historical events leading to national surveillance of vaccination coverage in the United States. Public Health Rep 2011;126 Suppl 2:3-12. doi: 0.1177/00333549111260S202.
9. Plotkin S. History of vaccination. Proc Natl Acad Sci U S A 2014;111:12283-7. doi: 10.1073/pnas.1400472111. Epub 2014 Aug 18.
10. Tsiamis C, Vrioni G, Dimopoulou C, Poulakou-Rebelakou E, Anoyatis-Pele D, Tsakris A. Controversies and lessons from the history of smallpox: the case of massive vaccination in British Corfu (1852). Infez Med 2021;29:284-91.
11. Conis E. Measles and the Modern History of Vaccination. Public Health Rep 2019;134:118-25. doi: 10.1177/0033354919826558. Epub 2019 Feb 14.
12. Baldwin P. Vaccination Politics and Policy. Sr Care Pharm 2023;38:161-2. doi: 10.4140/TCP.n.2023.161.
13. Odone A, Dallagiacoma G, Frascella B, Signorelli C, Leask J. Current understandings of the impact of mandatory vaccination laws in Europe. Expert Rev Vaccines 2021;20:559-75. doi: 10.1080/14760584.2021.1912603. Epub 2021 Jun 30.
14. Shah S, Brumberg HL. Advocate to vaccinate: moving away from the "politics" of vaccination. Pediatr Res 2024;95:1168-71. doi: 10.038/s41390-024-03043-4. Epub 2024 Feb 9.
15. Hoffman BL, Batra Hershey T, Chu KH, Sidani JE. Moving vaccination beyond partisan politics. Vaccine 2022;40:3815-7. doi: 10.1016/j.vaccine.2022.05.049. Epub May 27.
16. Hall AJ. Vaccination politics. Trop Med Int Health 2003;8:1-2. doi: 10.1046/j.365-3156.2003.00985.x.
17. Alemi F, Lee KH. Impact of Political Leaning on COVID-19 Vaccine Hesitancy: A Network-Based Multiple Mediation Analysis. Cureus 2023;15:e43232. doi: 10.7759/cureus.eCollection 2023 Aug.
18. Konstantopoulos A, Dayton L, Latkin C. The politics of vaccination: a closer look at the beliefs, social norms, and prevention behaviors related to COVID-19 vaccine uptake within two US political parties. Psychol Health Med 2024;29:589-602. doi: 10.1080/13548506.2023.2283401. Epub 2023 Nov 22.
19. Bolsen T, Palm R. Politicization and COVID-19 vaccine resistance in the U.S. Prog Mol Biol Transl Sci 2022;188:81-100. doi: 10.1016/bs.pmbts.2021.10.002. Epub Nov 10.
20. Fowler EF, Nagler RH, Banka D, Gollust SE. Effects of politicized media coverage: Experimental evidence from the HPV vaccine and COVID-19. Prog Mol Biol Transl Sci 2022;188:101-34. doi: 10.1016/bs.pmbts.2021.11.008. Epub 2 Jan 3.
21. Muric G, Wu Y, Ferrara E. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies. JMIR Public Health Surveill 2021;7:e30642. doi: 10.2196/.
22. Pielke RA.
23. Hasselgren PO. The Smallpox Epidemics in America in the 1700s and the Role of the Surgeons: Lessons to be Learned During the Global Outbreak of COVID-19. World J Surg 2020;44:2837-41. doi: 10.1007/s00268-020-5670-4.
24. Maneze D, Salamonson Y, Grollman M, Montayre J, Ramjan L. Mandatory COVID-19 vaccination for healthcare workers: A discussion paper. Int J Nurs Stud 2023;138:104389.:10.1016/j.ijnurstu.2022.104389. Epub 2022 Nov 9.
25. Auranen K, Shubin M, Erra E, et al. Efficacy and effectiveness of case isolation and quarantine during a growing phase of the COVID-19 epidemic in Finland.
26. Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024;10:e49185.:10.2196/49185.
27. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis. Lancet 2023;401:833-42. doi: 10.1016/S0140-6736(22)02465-5. Epub 2023 Feb 16.
28. Cowpox and paravaccinia. Br Med J 1967;4:308-9.
29. Boylston A. The origins of vaccination: myths and reality. J R Soc Med 2013;106:351-4. doi: 10.1177/0141076813499292.
30. Andre FE, Booy R, Bock HL, et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ 2008;86:140-6. doi: 10.2471/blt.07.040089.
31. Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 2005;18:21-5. doi: 10.1080/08998280.2005.11928028.
32. Williams N. Pox precursors. Curr Biol 2007;17:R150-1. doi: 10.1016/j.cub.2007.02.024.
33. Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023;13:325. doi: 10.3390/biom13020325.
34. Miller L, Richter M, Hapke C, Stern D, Nitsche A. Genomic expression libraries for the identification of cross-reactive orthopoxvirus antigens. PLoS One 2011;6:e21950. doi: 10.1371/journal.pone.0021950. Epub 2011 Jul 14.
35. van Seventer JM, Hochberg NS. Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. International Encyclopedia of Public Health 2017:24.
36. DeFrancesco L. Whither COVID-19 vaccines? Nat Biotechnol 2020;38:1132-45. doi: 10.038/s41587-020-0697-7.
37. Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci 2022;23:1716. doi: 10.3390/ijms23031716.
38. Kochhar S, Barreira D, Beattie P, et al. Building the concept for WHO Evidence Considerations for Vaccine Policy (ECVP): Tuberculosis vaccines intended for adults and adolescents as a test case. Vaccine 2022;40:1681-90. doi: 10.016/j.vaccine.2021.10.062. Epub 2 Feb 11.
39. Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022;35:e0000821. doi: 10.1128/cmr.00008-21. Epub 2022 Jul 6.
40. Follmann DA, Fay MP. Vaccine efficacy at a point in time. Biostatistics 2023;24:603-17. doi: 10.1093/biostatistics/kxac008.
41. Chavda VP, Prajapati R, Lathigara D, et al. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther 2022;22:763-80. doi: 10.1080/14712598.2022.2078160. Epub 2022 May 29.
42. Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. Mol Biomed 2022;3:40. doi: 10.1186/s43556-022-00098-9.
43. Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2021;12:662218.:10.3389/fimmu.2021.662218. eCollection 2021.
44. Hammarlund E, Lewis MW, Hansen SG, et al. Duration of antiviral immunity after smallpox vaccination. Nat Med 2003;9:1131-7. doi: 10.038/nm917. Epub 2003 Aug 17.
45. Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med 2021;385:e84. doi: 10.1056/NEJMoa2114583. Epub 2021 Oct 6.
46. Feikin DR, Higdon MM, Abu-Raddad LJ, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet 2022;399:924-44. doi: 10.1016/S0140-6736(22)00152-0. Epub 2022 Feb 23.
47. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021;19:409-24. doi: 10.1038/s41579-021-00573-0. Epub 2021 Jun 1.
48. Ao D, Lan T, He X, et al. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. 2020) 2022;3:e126. doi: 10.1002/mco2.126. eCollection 2022 Mar.
49. Chakraborty C, Bhattacharya M, Dhama K. SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Vaccines (Basel) 2023;11:682. doi: 10.3390/vaccines11030682.
50. Barda N, Dagan N, Ben-Shlomo Y, et al. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med 2021;385:1078-90. doi: 10.56/NEJMoa2110475. Epub 2021 Aug 25.
51. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ 2021;373:n1088.:10.1136/bmj.n088.
52. Levine-Tiefenbrun M, Yelin I, Alapi H, et al. Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2. Nat Med 2021;27:2108-10. doi: 10.1038/s41591-021-01575-4. Epub 2021 Nov 2.
53. Braeye T, Catteau L, Brondeel R, et al. Vaccine effectiveness against transmission of alpha, delta and omicron SARS-COV-2-infection, Belgian contact tracing, 2021-2022. Vaccine 2023;41:3292-300. doi: 10.1016/j.vaccine.2023.03.069. Epub Apr 5.
54. Martínez-Baz I, Trobajo-Sanmartín C, Miqueleiz A, et al. Risk reduction of hospitalisation and severe disease in vaccinated COVID-19 cases during the SARS-CoV-2 variant Omicron BA.1-predominant period, Navarre, Spain, January to March 2022. Euro Surveill 2023;28:2200337. doi: 10.2807/1560-7917.ES.2023.28.5..
55. Hodgson D, Flasche S, Jit M, Kucharski AJ. The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant. Euro Surveill 2021;26:2100428. doi: 10.2807/1560-7917.ES.2021.26.20..
56. Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, et al. A review: Mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol 2021;35:20587384211002621.:10.1177/20587384211002621.
57. Bojadzic D, Alcazar O, Chen J, et al. Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2. ACS Infect Dis 2021;7:1519-34. doi: 10.021/acsinfecdis.1c00070. Epub 2021 May 12.
58. Hurt AC, Wheatley AK. Neutralizing Antibody Therapeutics for COVID-19. Viruses 2021;13:628. doi: 10.3390/v13040628.
59. Lazarus JV, White TM, Wyka K, et al. Influence of COVID-19 on trust in routine immunization, health information sources and pandemic preparedness in 23 countries in 2023.
60. Cascini F, Pantovic A, Al-Ajlouni YA, et al. Social media and attitudes towards a COVID-19 vaccination: A systematic review of the literature. EClinicalMedicine 2022;48:101454.:10.1016/j.eclinm.2022.101454. Epub 2022 May 20.
61. Wawrzuta D, Klejdysz J, Jaworski M, Gotlib J, Panczyk M. Attitudes toward COVID-19 Vaccination on Social Media: A Cross-Platform Analysis. Vaccines (Basel) 2022;10:1190. doi: 10.3390/vaccines10081190.
62. Bardosh K, de Figueiredo A, Gur-Arie R, et al. The unintended consequences of COVID-19 vaccine policy: why mandates, passports and restrictions may cause more harm than good. BMJ Glob Health 2022;7:e008684. doi: 10.1136/bmjgh-2022-.
63. Dye C, Mills MC. COVID-19 vaccination passports. Science 2021;371:1184. doi: 10.26/science.abi5245.
64. Canning AG, Watson KE, McCreedy KE, Olawepo JO. Ethics and Effectiveness of US COVID-19 Vaccine Mandates and Vaccination Passports: A Review. J Res Health Sci 2022;22:e00546. doi: 10.34172/jrhs.2022.81.
65. Stead M, Ford A, Eadie D, et al. A "step too far" or "perfect sense"? A qualitative study of British adults' views on mandating COVID-19 vaccination and vaccine passports. Vaccine 2022;40:7389-96. doi: 10.1016/j.vaccine.2022.05.072. Epub Jun 3.
66. Anderson A, Borfitz D, Getz K. Global Public Attitudes About Clinical Research and Patient Experiences With Clinical Trials. JAMA Netw Open 2018;1:e182969. doi: 10.1001/jamanetworkopen.2018.2969.
67. Woloshin S, Schwartz LM. Media reporting on research presented at scientific meetings: more caution needed. Med J Aust 2006;184:576-80. doi: 10.5694/j.1326-5377.2006.tb00384.x.
68. Gilan D, Birkenbach M, Wossidlo M, et al. Fear of COVID-19 disease and vaccination as predictors of vaccination status. Sci Rep 2023;13:8865. doi: 10.1038/s41598-023-35064-0.
69. Vitiello A, Ferrara F, Troiano V, La Porta R. COVID-19 vaccines and decreased transmission of SARS-CoV-2. Inflammopharmacology 2021;29:1357-60. doi: 10.007/s10787-021-00847-2. Epub 2021 Jul 19.
70. Callaway E. Delta coronavirus variant: scientists brace for impact. Nature 2021;595:17-8. doi: 0.1038/d41586-021-01696-3.
71. Morens DM, Folkers GK, Fauci AS. The Concept of Classical Herd Immunity May Not Apply to COVID-19. J Infect Dis 2022;226:195-8. doi: 10.1093/infdis/jiac109.
72. Allen JD, Fu Q, Shrestha S, et al. Medical mistrust, discrimination, and COVID-19 vaccine behaviors among a national sample U.S. adults. SSM Popul Health 2022;20:101278.:10.1016/j.ssmph.2022.101278. eCollection 2022 Dec.
73. To KK, Sridhar S, Chiu KH, et al. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect 2021;10:507-35. doi: 10.1080/22221751.2021.1898291.
74. Xu X, Wu Y, Kummer AG, et al. Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med 2023;21:374. doi: 10.1186/s12916-023-03070-8.
75. Madewell ZJ, Yang Y, Longini IM, Jr., Halloran ME, Vespignani A, Dean NE. Rapid review and meta-analysis of serial intervals for SARS-CoV-2 Delta and Omicron variants. BMC Infect Dis 2023;23:429. doi: 10.1186/s12879-023-08407-5.
76. Duong BV, Larpruenrudee P, Fang T, et al. Is the SARS CoV-2 Omicron Variant Deadlier and More Transmissible Than Delta Variant? Int J Environ Res Public Health 2022;19:4586. doi: 10.3390/ijerph19084586.
77. Backer JA, Eggink D, Andeweg SP, et al. Shorter serial intervals in SARS-CoV-2 cases with Omicron BA.1 variant compared with Delta variant, the Netherlands, 13 to 26 December 2021. Euro Surveill 2022;27:2200042. doi: 10.2807/1560-7917.ES.2022.27.6..
78. Moussaoui LS, Claxton N, Desrichard O. Fear appeals to promote better health behaviors: an investigation of potential mediators. Health Psychol Behav Med 2021;9:600-18. doi: 10.1080/21642850.2021.1947290. eCollection 2021.
79. Hotez PJ, Nuzhath T, Callaghan T, Colwell B. COVID-19 vaccine decisions: considering the choices and opportunities. Microbes Infect 2021;23:104811. doi: 10.1016/j.micinf.2021.. Epub 2021 Mar 17.
80. Wassenaar TM, Wanchai V, Buzard G, Ussery DW. The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. FEMS Microbiol Rev 2022;46:fuac003. doi: 10.1093/femsre/fuac003.
81. Omotuyi O, Olubiyi O, Nash O, et al. SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Comput Biol Med 2022;142:105226.:10.1016/j.compbiomed.2022.105226. Epub 2022 Jan 7.
82. Dhama K, Nainu F, Frediansyah A, et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health 2023;16:4-14. doi: 0.1016/j.jiph.2022.11.024. Epub Nov 19.
83. Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 2020;9:e61312.:10.7554/eLife.61312.
84. DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun 2021;538:211-217.:10.1016/j.bbrc.2020.10.060. Epub Oct 23.
85. Brown EL, Essigmann HT. Original Antigenic Sin: the Downside of Immunological Memory and Implications for COVID-19. mSphere 2021;6:e00056-21. doi: 10.1128/mSphere.-21.
86. McCarthy MW. Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opin Biol Ther 2022;22:1353-8. doi: 10.080/14712598.2022.2137402. Epub 2022 Oct 18.
87. Kohler H, Nara P. A Novel Hypothesis for Original Antigenic Sin in the Severe Disease of SARS-CoV-2 Infection. Monoclon Antib Immunodiagn Immunother 2020;39:107-11. doi: 10.1089/mab.2020.0029. Epub 2020 Aug 10.
88. Nidadavolu LS, Walston JD. Underlying Vulnerabilities to the Cytokine Storm and Adverse COVID-19 Outcomes in the Aging Immune System. J Gerontol A Biol Sci Med Sci 2021;76:e13-e8. doi: 0.1093/gerona/glaa209.
89. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;20:669-77. doi: 10.1016/S473-3099(20)30243-7. Epub 2020 Mar 30.
90. Hartantri Y, Debora J, Widyatmoko L, et al. Clinical and treatment factors associated with the mortality of COVID-19 patients admitted to a referral hospital in Indonesia. Lancet Reg Health Southeast Asia 2023;11:100167.:10.1016/j.lansea.2023.100167. Epub 2023 Feb 9.
91. Shen AK, Browne S, Srivastava T, Kornides ML, Tan ASL. Trusted messengers and trusted messages: The role for community-based organizations in promoting COVID-19 and routine immunizations. Vaccine 2023;41:1994-2002. doi: 10.1016/j.vaccine.2023.02.045. Epub Feb 16.
92. Kwak C, Han W. Age-Related Difficulty of Listening Effort in Elderly. Int J Environ Res Public Health 2021;18:8845. doi: 10.3390/ijerph18168845.
93. Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity 2010;33:516-29. doi: 10.1016/j.immuni.2010.10.006.
94. Davis MM. Systems immunology. Curr Opin Immunol 2020;65:79-82.:10.1016/j.coi.2020.06.006. Epub Jul 30.
95. Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol 2017;17:21-9. doi: 10.1038/nri.2016.125. Epub Dec 5.
96. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology 2007;120:435-46. doi: 10.1111/j.365-2567.007.02555.x. Epub 2007 Feb 15.
97. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 2008;8:247-58. doi: 10.1038/nri2274. Epub 008 Mar 7.
98. Ambrose CS, Luke C, Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respir Viruses 2008;2:193-202. doi: 10.1111/j.750-2659.008.00056.x.
99. Soegiarto G, Wulandari L, Purnomosari D, et al. Hypertension is associated with antibody response and breakthrough infection in health care workers following vaccination with inactivated SARS-CoV-2. Vaccine 2022;40:4046-56. doi: 10.1016/j.vaccine.2022.05.059. Epub May 27.
100. Fernandes M, Vasconcelos GS, de Melo ACL, et al. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol Immunol 2023;156:148-155.:10.1016/j.molimm.2023.03.007. Epub Mar 10.
101. Koyama S, Ishii KJ, Coban C, Akira S. Innate immune response to viral infection. Cytokine 2008;43:336-41. doi: 10.1016/j.cyto.2008.07.009. Epub Aug 9.
102. Livieratos A, Gogos C, Akinosoglou K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024;16:685. doi: 10.3390/v16050685.
103. Morens DM, Taubenberger JK, Fauci AS. Universal Coronavirus Vaccines - An Urgent Need. N Engl J Med 2022;386:297-9. doi: 10.1056/NEJMp2118468. Epub 2021 Dec 15.
104. Hossain MA, Jahid MIK, Hossain KMA, et al. Knowledge, attitudes, and fear of COVID-19 during the Rapid Rise Period in Bangladesh. PLoS One 2020;15:e0239646. doi: 10.1371/journal.pone.. eCollection 2020.
105. Karaivanov A, Kim D, Lu SE, Shigeoka H. COVID-19 vaccination mandates and vaccine uptake. Nat Hum Behav 2022;6:1615-24. doi: 10.038/s41562-022-01363-1. Epub 2022 Jun 2.
106. Cowling BJ, Ali ST, Ng TWY, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health 2020;5:e279-e88. doi: 10.1016/S2468-667(20)30090-6. Epub 2020 Apr 17.
107. Kofler W, Glazachev OS, Lyshol H, Tellnes G. Is fighting against COVID-19 enough? Scand J Public Health 2021;49:9-13. doi: 0.1177/1403494820969539. Epub 2020 Nov 12.
108. Muñoz-Alía M, Nace RA, Zhang L, Russell SJ. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep Med 2021;2:100225. doi: 10.1016/j.xcrm.2021.. eCollection 2021 Apr 20.
109. Mertz D, Fadel SA, Lam PP, et al. Herd effect from influenza vaccination in non-healthcare settings: a systematic review of randomised controlled trials and observational studies. Euro Surveill 2016;21:30378. doi: 10.2807/1560-7917.ES.2016.21.42..
110. Aschwanden C. Five reasons why COVID herd immunity is probably impossible. Nature 2021;591:520-2. doi: 10.1038/d41586-021-00728-2.
111. Jennings W, Stoker G, Bunting H, et al. Lack of Trust, Conspiracy Beliefs, and Social Media Use Predict COVID-19 Vaccine Hesitancy. Vaccines (Basel) 2021;9:593. doi: 10.3390/vaccines9060593.
112. Toxvaerd F, Rowthorn R. On the management of population immunity. J Econ Theory 2022;204:105501.:10.1016/j.jet.2022.105501. Epub 2022 Jun 10.
113. Sprengholz P, Betsch C. Herd immunity communication counters detrimental effects of selective vaccination mandates: Experimental evidence. EClinicalMedicine 2020;22:100352.:10.1016/j.eclinm.2020.100352. eCollection 2020 May.
114. Taub DD, Ershler WB, Janowski M, et al. Immunity from smallpox vaccine persists for decades: a longitudinal study. Am J Med 2008;121:1058-64. doi: 10.16/j.amjmed.2008.08.019.
115. Shenai MB, Rahme R, Noorchashm H. Equivalency of Protection From Natural Immunity in COVID-19 Recovered Versus Fully Vaccinated Persons: A Systematic Review and Pooled Analysis. Cureus 2021;13:e19102. doi: 10.7759/cureus.. eCollection 2021 Oct.
116. Franchi M, Pellegrini G, Cereda D, et al. Natural and vaccine-induced immunity are equivalent for the protection against SARS-CoV-2 infection. J Infect Public Health 2023;16:1137-41. doi: 10.016/j.jiph.2023.05.018. Epub May 20.
117. Gazit S, Shlezinger R, Perez G, et al.
118. Diani S, Leonardi E, Cavezzi A, et al. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022;11:6272. doi: 10.3390/jcm11216272.
119. Kalk A, Sturmberg J, Van Damme W, et al. Surfing Corona waves - instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. 1000Res 2022;11:337.:10.12688/f1000research.110593.2. eCollection 2022.
120. Mikolajczyk R, Diexer S, Klee B, et al. Likelihood of Post-COVID Condition in people with hybrid immunity; data from the German National Cohort (NAKO). J Infect 2024;89:106206. doi: 10.1016/j.jinf.2024..
121. Chebil D, Ben Hassine D, Melki S, et al. Place of distancing measures in containing epidemics: a scoping review. Libyan J Med 2022;17:2140473. doi: 10.1080/19932820.2022.2140473.
122. Newbold SC, Ashworth M, Finnoff D, Shogren JF, Thunström L. Physical distancing versus testing with self-isolation for controlling an emerging epidemic. Sci Rep 2023;13:8185. doi: 10.1038/s41598-023-35083-x.
123. Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines 2021;20:23-44. doi: 10.1080/14760584.2021.1875824. Epub 2021 Feb 17.
124. Van Damme W, Dahake R, Delamou A, et al. The COVID-19 pandemic: diverse contexts; different epidemics-how and why? BMJ Glob Health 2020;5:e003098. doi: 10.1136/bmjgh-2020-.
125. Imai N, Gaythorpe KAM, Abbott S, et al. Adoption and impact of non-pharmaceutical interventions for COVID-19. Wellcome Open Res 2020;5:59.:10.12688/wellcomeopenres.5808.1. eCollection 2020.
126. Alexander M, Unruh L, Koval A, Belanger W. United States response to the COVID-19 pandemic, January-November 2020. Health Econ Policy Law 2022;17:62-75. doi: 10.1017/S1744133121000116. Epub 2021 Mar 5.
127. Brown LD. Fomenters of Fiasco: Explaining the Failed Policy Response to COVID-19 in the United States. International Review of Public Policy 2021;3:216-30.
128. Jones L, Hameiri S.
129. Weible CM, Nohrstedt D, Cairney P, et al. COVID-19 and the policy sciences: initial reactions and perspectives.
130. Chokshi DA. Commonality and Continuity in Responses to Pandemic and Endemic COVID-19. JAMA Health Forum 2021;2:e212474. doi: 10.1001/jamahealthforum.2021.2474.
131. Villarreal LP, DeFilippis VR. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 2000;74:7079-84. doi: 10.1128/jvi.74.15.7079-84.2000.
132. Goic B, Saleh MC. Living with the enemy: viral persistent infections from a friendly viewpoint. Curr Opin Microbiol 2012;15:531-7. doi: 10.1016/j.mib.2012.06.002. Epub Jul 5.
133. Rodpothong P, Auewarakul P. Viral evolution and transmission effectiveness. World J Virol 2012;1:131-4. doi: 10.5501/wjv.v1.i5.131.
134. Sachs JD, Karim SSA, Aknin L, et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022;400:1224-80. doi: 10.016/S0140-6736(22)01585-9. Epub 2022 Sep 14.
135. Skafle I, Nordahl-Hansen A, Quintana DS, Wynn R, Gabarron E. Misinformation About COVID-19 Vaccines on Social Media: Rapid Review. J Med Internet Res 2022;24:e37367. doi: 10.2196/.
136. Adebesin F, Smuts H, Mawela T, Maramba G, Hattingh M. The Role of Social Media in Health Misinformation and Disinformation During the COVID-19 Pandemic: Bibliometric Analysis. JMIR Infodemiology 2023;3:e48620.:10.2196/48620.
137. Joseph AM, Fernandez V, Kritzman S, et al. COVID-19 Misinformation on Social Media: A Scoping Review. Cureus 2022;14:e24601. doi: 10.7759/cureus.. eCollection 2022 Apr.
138. Lorenz-Spreen P, Lewandowsky S, Sunstein CR, Hertwig R. How behavioural sciences can promote truth, autonomy and democratic discourse online.
139. Wolff G. Social pathology as a medical science. 1952. Am J Public Health 2013;103:2200-2. doi: 10.105/AJPH.013.103122200.
140. Ng QX, Ng CX, Ong C, Lee DYX, Liew TM. Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023. Vaccines (Basel) 2023;11:1518. doi: 10.3390/vaccines11101518.