ENDOMETRIOSIS-RELATED OVARIAN CARCINOGENESIS: UNRAVELLING THE ROOTS OF A LONG-STANDING ENIGMA

Main Article Content

Demetrio Larrain, MD Nicanor Barrena, MD

Abstract

Endometriosis is a gynecologic disease in which ectopic endometrial tissue causes both chronic pelvic pain and infertility. Likewise, this entity has been linked with the development of certain types of epithelial ovarian cancer. The mechanisms underlying this association have remained largely elusive yet recent advances in terms of identifying histologically well-defined precursor lesions as well as key molecular and genetic abnormalities involved in the endometriosis malignant transformation have dramatically improved the understanding of this clinical conundrum.

Article Details

How to Cite
LARRAIN, Demetrio; BARRENA, Nicanor. ENDOMETRIOSIS-RELATED OVARIAN CARCINOGENESIS: UNRAVELLING THE ROOTS OF A LONG-STANDING ENIGMA. Medical Research Archives, [S.l.], v. 12, n. 11, nov. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5965>. Date accessed: 12 dec. 2024. doi: https://doi.org/10.18103/mra.v12i11.5965.
Section
Research Articles

References

1) Smolarz B, Syllo K, Romanowicz H. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (Review of the literature). Int J Mol Sci 2021; 22 (19): 10554. doi: 10.3390/ijms221910554.

2) Centini G, Schettini G, Pieri E, et al. Endometriosis-related ovarian cancer: Where are we now? A narrative review towards a pragmatic approach. J Clin Med 2024; 13 (7): 1933. doi: 10.3390/jcm13071933.

3) Kvaskoff M, Mahamat-Saleh Y, Farland LV, et al. Endometriosis and cancer: a systematic review and meta-analysis. Hum Reprod Update 2021; 27 (2): 393-420. doi: 10.1093/humupd/dmaa045.

4) Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68 (4): 284-96. doi: 10.3322/caac.21456.

5) Kobayashi H, Sumimoto K, Moniwa N, et al. Risk of developing ovarian cancer among women with ovarian endometrioma: a cohort study in Shizuoka, Japan. Int J Gynecol Cancer 2007; 17 (1): 37-43. doi: 10.1111/j.1525-1438.2006.00754.x.

6) Ñiguez-Sevilla I, Machado Linde F, Marín Sánchez MDP, et al. Prognostic importance of atypical endometriosis with architectural hyperplasia versus cytologic atypia in endometriosis-associated ovarian cancer. J Gynecol Oncol 2019; 30 (4): e63. doi: 10.3802/jgo.2019.30.e63.

7) McCluggage WG. Endometriosis-related pathology: a discussion of selected uncommon benign, premalignant and malignant lessions. Histopathology 2020; 76 (1): 76-92. doi: 10.1111/hi s.13970.

8) Kobayashi H, Suminoto K, Kitanaka T, et al. Ovarian endometrioma- risk factors of ovarian cancer development. Eur J Obstet Gynecol Reprod Biol 2008; 138 (2): 187-93. doi: 10.1016/j.ejogrb.2007.06.017.

9) Thomsen LH, Schnack TH, Buchardi K, et al. Risk factors of epithelial ovarian carcinomas among women with endometriosis: a systematic review. Acta Obstet Gynecol Scand 2017; 96 (6): 761-78. doi: 10.1111/aogs.13010.

10) Van Gorp T, Amant F, Neven P, Vergote I, Moerman P. Endometriosis and the development of malignant tumours of the pelvis. A review of the literature. Best Pract Res Clin Obstet Gynaecol 2004; 18 (2): 349-71. doi: 10.1016/j.bpobgyn.2003.03.001.

11) Pearce CL, Templeman C, Rossing MA, Lee A, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol 2012; 13 (4): 385-94. doi: 10.1016/S1470-2045(11)70404-1.

12) Hermens M, van Altena AM, Nieboer TE, et al. Incidence of endometrioid and clear-cell ovarian cancer in histological proven endometriosis: the ENOCA population-based study. Am J Obstet Gynecol 2020; 223 (1): 107.e1-107.e11. doi: 10.1016/j.ajog.2020.01.041.

13) Barnard ME, Farland LV, Yan B, Wang J, et al. Endometriosis typology and endometrial cancer risk. JAMA 2024; 332 (6): 482-9. doi: 10.1001/jam a.2024.9210.

14) Saavalainen L, Lassus H, But A, Tiitinen A, et al. Risk of gynecologic cancer according to the type of endometriosis. Obstet Gynecol 2018; 131(6): 1095-102. doi: 10.1097/AOG.0000000000 002624.

15) Mangili G, Bergamini A, Taccagni G, et al. Unraveling the two entities of endometrioid ovarian cancer: a single center clinical experience. Gynecol Oncol 2012; 126 (3): 403-7. doi: 10.1016 /j.ygyno.2012.05.007.

16) Bassiouny D, El-Baz MA, Gamil TM, Shams N, et al. Endometriosis-associated ovarian cancer is a subset with a more favorable outcome and distinct clinical-pathologic characteristics. Int J Gynecol Pathol 2019; 38 (5): 435-42. doi: 10.1097 /PGP.0000000000000533.

17) Wang S, Qiu L, Lang JH, et al. Clinical analysis of ovarian epithelial carcinoma with coexisting pelvic endometriosis. Am J Obstet Gynecol 2013; 208 (5): 413.e1-5. doi: 10.1016/j.ajog.2012.12.004.

18) Kumar S, Munkarah A, Arabi H, et al. Prognosis analysis of ovarian cancer associated with endometriosis. Am J Obstet Gynecol 2011; 204 (1): 63.e1-7. doi: 10.1016/j.ajog.2010.08.017.

19) Bounous V, Ferrero A, Fuso L, Ravarino N, et al. Endometriosis-associated ovarian cancer: a distinct clinical entity? Anticancer Res 2016; 36 (7): 3445-9.

20) Davis M, Rauh-Hain JA, Andrade C, et al. Comparison of clinical outcomes of patients with clear cell and endometrioid ovarian cancer associated with endometriosis to papillary serous carcinoma of the ovary. Gynecol Oncol 2014; 132 (3): 760-6. doi: 10.1016/j.ygyno.2014.01.012.

21) Ju UC, Kang WD, Kim SM. The effect of concurrent endometriosis on the prognosis of women with ovarian clear cell or endometrioid carcinoma. Int Gynaecol Obstet 2019; 146 (2): 177-83. doi: 10.1002/ijgo.12861.

22) Noli S, Cipriani S, Scarfone G, et al. Long term survival of endometriosis associated clear cell and endometrioid ovarian cancers. Int J Gynecol Cancer 2013; 23 (2): 244-8. doi: 10.1097/IGC.0 b013e31827aa0bb.

23) Cuff J, Longacre TA. Endometriosis does not confer prognosis in ovarian carcinoma of uniform cell type. Am J Surg Pathol 2012; 36 (5):688-95. doi: 10.1097/PAS.0b013e31824b6eed.

24) Sampson JA. Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch Surg 1925; 10 (1): 1-72. doi:10.1001/archsurg.1925.01120100007001.

25) Scott RB. Malignant changes in endometriosis. Obstet Gynecol 1953; 2 (3): 283-9.

26) Capozzi VA, Scarpelli E, dell`Omo S, Rolla M, et al. Atypical endometriosis: A comprehensive systematic review of pathological patterns and diagnostic challenges. Biomedicines 2024; 12 (6): 1209. doi: 10.3390/biomedicines12061209.

27) Fukunaga M, Nomura K, Ishikawa E, et al. Ovarian atypical endometriosis: its close association with malignant epithelial tumors. Histopathology 1997; 30 (3): 249-55. doi: 10.1046/j.1365-2559.199 7.d01-592.x.

28) Guidozzi F. Endometriosis-associated cancer. Climateric 2021; 24 (6): 587-92. doi: 10.1080/1369 7137.2021.1948994.

29) Del Mundo MM, Aguilar M, Chen H, et al. β-catenin, PAX2, and PTEN aberrancy across the spectrum of endometrioid ovarian lesions. Int J Gynecol Pathol 2024. doi: 10.1097/PGP.00000000 00001046. Online ahead of print.

30) Wepy C, Nucci MR, Parra-Herran. Atypical endometriosis: Comprehensive characterization of clinic-pathologic, immunohistochemical, and molecular features. Int J Gynecol Pathol 2023; 43 (1): 70-7. doi: 10.1097/PGP.0000000000000952.

31) Fukunaga M, Ushigome S. Epithelial metaplastic changes in ovarian endometriosis. Mod Pathol 1998; 11(8): 784-8.

32) Ogawa S, Kaku T, Amada S, et al. Ovarian endometriosis associated with ovarian carcinoma: a clinicopathological and immunohistochemical study. Gynecol Oncol 2000; 77 (2) : 298-304. doi: 10.1006/gyno.2000.5765.

33) Yamamoto S, Tsuda H, Miyai K, Takano M, Tamai S, Matsubara O. Cumulative alterations in p27-related cell-cycle regulators in the development of endometriosis-associated ovarian clear cell adenocarcinoma. Histopathology 2010; 56 (6): 740-9. doi: 10.1111/j.1365-2559.2010.03551.x.

34) Vercellini P, Cribiù FM, Del Gobbo A, Carcangiu ML, Somigliana E, Bosari S. The oncofetal protein IM3: a novel biomarker and triage tool for premalignant atypical endometriotic lesions. Fertil Steril 2013; 99 (7): 1974-9. doi: 10.1016/j.fertnstert.2013.02.002.

35) Kurman RJ, Shih IE. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 2010; 34 (3): 433-43. doi: 10.1097/PAS.0b013e3181cf3d79.

36) Kurman RJ, Shih IE. The dualistic model of ovarian carcinogenesis: revisited, revised and expanded. Am J Pathol 2016; 186 (4): 733-47. doi: 10.1016/j.ajpath.2015.11.011.

37) Hollis RL. Molecular characteristics and clinical behaviour of epithelial ovarian cancers. Cancer Lett 2023; 555: 216057. doi: 10.1016/j.ca nlet.2023.216057.

38) Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet 2021; 397 (10276): 839-52. doi: 10.1016/S0140-6736(21) 00389-5.

39) Gazvani R, Templeton A. New consideration for the pathogenesis of endometriosis. Int J Gynaecol Obstet 2002; 76 (2): 117-26. doi: 10.101 6/s0020-7292(01)00577-x.

40) Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 1927; 14 (4): 442-69. https://doi.org/10.1016/s0002-9378(15)30003-x

41) Vercellini P, Crosignani P, Somigliana E, et al. The “incessant menstruation” hypothesis: a mechanistic ovarian cancer model with implications for prevention. Hum Reprod 2011; 26 (9): 2262-73. doi: 10.1093/humrep/der211.

42) Suda K, Nakaoka H, Yoshihara K, et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Reports 2018; 24 (7): 1777-89. doi: 10.1016/j.celrep.2018.07.037.

43) Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26 (3): 423-49. doi: 10.1093/humupd/dmz047.

44) Cadish LA, Sheperd JP, Barber EL, Ridgeway B. Risks and benefits of opportunistic salpingectomy during vaginal hysterectomy: a decision-analysis. Am J Obstet Gynecol 2017; 217 (5): 603.e1-6. doi: 10.1016/j.ajog.2017.06.007.

45) Modugno F, Ness RB, Allen GO, Schildkraut JM, Davis FG, Goodman MT. Oral contraceptive use, reproductive history, and risk of epithelial ovarian cancer in women with and without endometriosis. Am J Obstet Gynecol 2004; 191 (3): 733-40. doi: 10.1016/j.ajog.2004.03.035.

46) Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005; 11 (1): 63-70. doi: 10.1038/nm1173.

47) Cibula D, Widschwendter M, Májek O, Dusek L. Tubal ligation and the risk of ovarian cancer: review and meta-analysis. Hum Reprod Update 2011; 17 (1): 55-67. doi: 10.1093/humupd/ dmq030.

48) Tworoger SS, Fairfield KM, Colditz GA, Rosner BA, Hankinson SE. Association of oral contraceptive use, other contraceptive methods, and infertility with ovarian cancer risk. Am J Epidemiol 2007; 166 (8): 894-901. doi: 10.1093/aje/kwm157.

49) Riman T, Nilsson S, Perrson IR. Review of epidemiological evidence for reproductive and hormonal factors in relation to the risk of epithelial ovarian malignancies. Acta Obstet Gynecol Scand 2004; 83 (9): 783-95. doi: 10.1111/j.0001-6349.2 004.00550.x.

50) Fathalla M. Incessant ovulation – a factor in ovarian neoplasia? Lancet 1971; 2 (7716): 163. doi: 10.1016/s0140-6736(71)92335-x.

51) Katabushi H, Okamura H. Cell biology of human ovarian surface epithelial cells and ovarian carcinogenesis. Med Electron Microsc 2003; 36 (2): 74-86. doi: 10.1007/s00795-002-0196-6.

52) Collaborative Group on Epidemiological Studies of Ovarian Cancer, Beral V, Doll R, Hermon C, Peto R, Reeves G. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 2008; 371 (9609): 303-14. doi: 10.1016/S0 140-6736(08)60167-1.

53) Prodromidou A, Kathopoulis N, Zacharakis D, Grigodiaris T, Chatzipapas I, Protopapas A. Tubal endometriosis: from bench to bedside, a review. J Pers Med 2022: 12 (3): 362. doi: 10.33 90/jpm12030362.

54) Hermens M, van Altena AM, Bulten J, Siebers AG, Bekkers RLM. Increased association of ovarian cancer in women with histological proven endosalpingiosis. Cancer Epidemiol 2020; 65: 101700. doi: 10.1016/j.canep.2020.101700.

55) Lac V, Nazeran TM, Tessier-Cloutier B, et al. Oncogenic mutations in histologically normal endometrium: the new normal? J Pathol 2019; 249 (2): 173-81. doi: 10.1002/path.5314.

56) Madanes D, Bilotas MA, Bastón JI, et al. PI3K/AKT pathway is altered in the endometriosis patient`s endometrium and presents differences according to severity stage. Gynecol Endocrinol 2020; 36 (5): 436-40. doi: 10.1080/09513590.201 9.1680627.

57) Wu Y, Kajdacsy-Balla A, Strawn E, et al. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology 2006; 147 (1): 232-46. doi: 10.1210/ en.2005-0426.

58) Li X, Zhang Y, Zhao L, et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Hum Mol Genet 2014; 23 (22): 6008-21. doi: 10.1093/hmg/ddu330.

59) Moore L, Cagan A, Coorens THH, et al. The mutational landscape of normal human endometrial epithelium. Nature 2020; 580 (7805): 640-6. doi: 10.1038/s41586-020-2214-z.

60) Anglesio MS, Papadopoulos N, Ayhan A, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med 2017; 376 (19): 1835-48. doi: 10.1056/NEJMoa1614814.

61) Wiegan KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363 (16): 1532-43. doi: 10.1056/NEJMoa1008433.

62) Jones S, Wang T-L, Shih I-M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330 (6001): 228-31. doi: 10.1126/science.1196333.

63) Govatati S, Kodati VL, Deenadayal M, Chakravarty B, Shivaji S, Bhanoori M. Mutations in PTEN tumor gene and risk of endometriosis: a case-control study. Hum Reprod 2014; 29 (2): 324-36. doi: 10.1093/humrep/det387.

64) Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometriosis cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 2000; 60 (24): 7052-6.

65) Koppolu A, Maksym RB, Paskal W, et al. Epithelial cells of deep infiltrating endometriosis harbor mutations in cancer driver genes. Cells 2021; 10 (4): 749. doi: 10.3390/cells10040749.

66) Samartzis EP, Samartis N, Noske A, et al. Loss of ARID1A/BAF250a-expression in endometriosis: a biomarker for risk of carcinogenic transformation? Mod Pathol 2012; 25 (6): 885-92. doi: 10.1038/modpathol.2011.217.

67) Zou Y, Zhou J-Y, Guo J-B, et al. The presence of KRAS, PPP2R1A and ARID1A mutations in 101 Chinese samples with ovarian endometriosis. Mutat Res 2018; 809: 1-5. doi: 10.1016/j.mrfmmm.2018.0 3.001.

68) Anglesio MS, Bashashati A, Wang YK, et al Multifocal endometriotic lesions associated with cancer are clonal and carry high mutation burden. J Pathol 2015; 236 (2): 201-9. doi: 10.1002/path.4516.

69) Stamp JP, Gilks CB, Wesseling M, et al. BAF250a expression in atypical endometriosis and endometriosis-associated ovarian cancer. Int J Gynecol Cancer 2016; 26 (5): 825-32. doi: 10.1097 /IGC.0000000000000698.

70) Er TK, Su YF, Wu CC, et al. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J Mol Med (Berl) 2016; 94 (7): 835-47. doi: 10.1007/s0 0109-016-1395-2.

71) Banz C, Ungethuem U, Kuban RJ, Diedrich K, Lengyel E, Hornung D. The molecular signature of endometriosis-associated endometrioid ovarian cancer differs significantly from endometriosis-independent endometrioid ovarian cancer. Fertil Steril 2010; 94 (4): 1212-7. doi: 10.1016/j.fertnster t.2009.06.039.

72) Samartzis E, Noske A, Dedes KJ, Fink D, Imesch P . ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. Int J Mol Sci 2013; 14 (9): 18824-49. doi: 10.3390/ijms1 40918824.

73) Wu RC, Wang TL, Shih IeM. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther 2014: 15 (6): 655-64. doi: 10.4161/cbt.28411.

74) Xiao W, Awadallah A, Xin W. Loss of ARID1A/BAF250a expression in ovarian endometriosis and clear cell carcinoma. Int J Clin Exp Pathol 2012; 5 (7): 642-50.

75) Chene G, Ouellet V, Rahimi K, Barres V, Provencher D, Mes-Masson AM. The ARID1A pathway in ovarian clear cell and endometrioid carcinoma, contiguous endometriosis, and benign endometriosis. Int J Gynaecol Obstet 2015; 130 (1): 27-30.

76) Ayhan A, Mao TL, Seckin T, et al. Loss of ARID1A expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int J Gynecol Cancer 2012; 22 (8): 1310-5. doi: 10.109 7/IGC.0b013e31826b5dcc.

77) Yachida N, Yoshihara K, Suda K, et al. ARID1A protein expression is retained in ovarian endometriosis with ARID1A loss-of-function mutations: Implication for the “two-hit” hypothesis. Sci Rep 2020; 10 (1): 14260. doi: 10.1038/s41598-020-71273-7.

78) Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, et al. Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Lett 2017; 401: 11-19. doi: 10.1016/j.canlet.2017.04.040.

79) Wu CH, Mao TL, Vang R, et al. Endocervical-type mucinous borderline tumors are related to endometrioid based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol 2012; 31 (4): 297-303. doi: 10.1097/PGP.0b013e31823f 8482.

80) McCluggage G, Singh N, Gilks B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020). Histopathology 2022; 80 (5): 762-78. doi: 10.1111/his.14609.

81) Hu Y, Fu K, Liu H, et al. Ovarian seromucinous carcinoma: an independent epithelial ovarian cancer? J Ovarian Res 2023; 16 (1): 18. doi: 10.118 6/s13048-023-01100-w.

82) Mikhaleva LM, Davydov AI, Patsap OI, et al. Malignant transformation and associated biomarkers of ovarian endometriosis: a narrative review. Adv Ther 2020; 37 (6): 2580-603. doi: 10.1007/s12325-020-01363-5.

83) Tang L, Bian C. Recent progress in endometriosis-associated ovarian cancer. Front Oncol 2024; 14: 1381244. doi: 10.3389/fonc.2024.1381244.

84) Guan B, Rahmanto YS, Wu RC, Wang Y, Wang Z, Wang TL, Shih IeM. Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. J Natl Cancer Inst 2014; 106 (7): dju146. doi: 10.1093/jnci/dju146.

85) Huang HN, Lin MC, Huang WC, Chiang YC, Kuo KT. Loss of ARID1A expression and its relationships with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod Pathol 2014; 27 (7): 983-90. doi: 10.1038/mo dpathol.2013.216.

86) Driva TS, Schatz C, Haybaeck J. Endometriosis-associated ovarian carcinomas: How a PI3K/AKT/mTOR pathway affects their pathogenesis. Biomolecules 2023; 13 (8): 1253. doi: 10.3390/biom13081253.

87) Chandler RL, Damrauer JS, Raab JR, et al. Coexistent ARD1A-PIK3CA mutations promotes ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signaling. Nat Commun 2015; 6: 6118. doi: 10.1038/ncomms7118.

88) Luchini C, Veronese N, Solmi M, et al. Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: a systematic review and meta-analysis. Oncotarget 2015; 6 (36): 39088-97. doi: 10.18632/oncotarg et.5142.

89) Heinze K, Nazeran TM, Lee S, et al. Validated biomarker assays confirm that ARID1A loss is confounded with MMR deficiency, CD8+ TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas. J Pathol 2022; 256 (4): 388-401. doi: 10.1002/path.5849.

90) Kato M, Masashi T, Miyamoto M, et al. Effect of ARID1A/BAF250a expresión on carcinogenesis and clinicopathological factors in pure-type clear cell adenocarcinoma of the ovary. Mol Clin Oncol 2016; 5 (4): 395-401. doi: 10.38 92/mco.2016.973.

91) Campbell IG, Russel SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 2004; 64 (21): 7678-81. doi: 10.1158/0008-5472.CAN-04-2933.

92) Yamamoto S, Tsuda H, Takano M, Iwaya K, Tamai S, Matsubara O. PIK3CA mutations is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma. J Pathol 2011; 225 (2): 189-94. doi: 10.1002/path.2 940.

93) Kuo KT, Mao TL, Jones S, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 2009; 174 (5): 1597-601. doi: 10.2353/ajpath.2009.081000.

94) Sekizawa A, Amemiya J, Otsuka J, et al, Malignant transformation of endometriosis: application of laser microdissection for analysis of genetic alterations according to pathological changes. Med Electron Microsc 2004; 37 (2): 97-100. doi: 10.1007/s00795-003-0233-0.

95) Wu R, Hendrix-Lucas N, Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/-catenin and PI3K/Pten signaling pathways. Cancer Cell 2007; 11 (4): 321-33. doi: 10.1016/j.c cr.2007.02.016.

96) Aziz AUR, Farid S, Qin K, Wang H, Liu B. PIM kinases and their relevance to the PI3K/AKT/ mTOR pathway in the regulation of ovarian cancer. Biomolecules 2018; 8 (1): 7. doi: 10.3390/biom8 010007.

97) Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59: 147-60. doi: 10.1016/j.semcancer.2019.05.012.

98) Arend RC, Londoño-Joshi AI, Straughn JM Jr, Buchsbaum DJ. The Wnt/-catenin pathway in ovarian cancer: A review. Gynecol Oncol 2013; 131 (3): 772-9. doi: 10.1016/j.ygyno.2013.09.034.

99) Kiewisz J, Wasniewski T, Kmiec Z. Participation of WNT and -catenin in physiological and pathological endometrial changes: association with angiogenesis. Biomed Res Int 2015; 2015: 854056. doi: 10.1155/2015/854056.

100) Klemmt PAB, Starzinski-Powitz A. Molecular and cellular pathogenesis of endometriosis. Curr Womens Health Rev 2018; 14 (2): 106-16. doi: 10.2174/1573404813666170306163448.

101) Zhang M, Xu T, Tong D, et al. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164: 114909. doi: 10.1016/j.biopha.2023.114909.

102) Zhang Y, Sun X, Li Z, et al. Interactions between miRNAs and the Wnt/-catenin signaling pathway in endometriosis. Biomed Pharmacother 2024; 171: 116182. doi: 10.1016/j.biopha.2024.1 16182.

103) Yang YM, Yang WX. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2017; 8 (25): 41679-89. doi: 10.18632/oncotarget.16472.

104) Vergara D, Merlot B, Lucot JP, et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010; 291(1): 59-66. doi: 10.1016/j.canlet.2009.09.017.

105) Linder A, Westbom-Fremer S, Mateoiu C, et al. Genomic alterations in ovarian endometriosis and subsequently diagnosed ovarian carcinoma. Hum Reprod 2024; 39 (5): 1141-54. doi: 10.109 3/humrep/deae043.

106) Calmon MS, Lemos FFB, Silva Luz , et al. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024: 15 (4): 496-522. doi: 10.5306/wjco.v15.i4.496.

107) Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 173090. doi: 10.1016/j.ejphar.2020.17 3090.

108) Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps – myth or reality? Clin Sci (Lond) 2023; 137 (15): 1067-93. doi: 10.1042/CS20220531.

109) Brunty S, Clower L, Mitchell B, Fleshman T, Zgheib NB, Santanam N. Peritoneal modulators of endometriosis-associated ovarian cancer. Front Oncol 2021; 11: 793297. doi: 10.3389/fonc.202 1.793297.

110) Szlosarek PW, Grimshaw MJ, Kulbe H, et al. Expression and regulation of tumor necrosis factor  in normal and malignant ovarian epithelium. Mol Cancer Ther 2006; 5 (2): 382-90. doi: 10.1158/153 5-7163.MCT-05-0303.

111) Yang HL, Zhou WJ, Chan KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-. Reproduction 2017; 154 (6): 815-25. doi: 10.1530 /REP-17-0342.

112) Kang YJ, Jeung IC, Park A, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod 2014; 29 (10): 2176-89. doi: 10.1093/humrep/deu172.

113) Sikora J, Smycz-Kubanska M, Mielczarek-Palacz A, Bednarek I, Kondera-Anasz Z. The involvement of multifuncional TGF-beta and related cytokines in pathogenesis of endometriosis. Immunol Lett 2018; 201: 31-7. doi: 10.1016/j.imlet. 2018.10.011.

114) Ibrahim MG, Sillem M, Plendl J, et al. Arrangement of myofibroblastic and smooth muscle-like cells in superficial peritoneal endometriosis and a possible role of transforming growth factor beta 1 (TGF1) in myofibroblastic metaplasia. Arch Gynecol Obstet 2019; 299 (2): 489-99. doi: 10.10 07/s00404-018-4995-y.

115) Nilsson EE, Skinner MK. Role of transforming growth factor  in ovarian surface epithelium biology and ovarian cancer. Reprod Biomed Online 2002; 5 (3): 254-8. doi: 10.1016/s1472-6483(10)6 1828-7.

116) Mikula-Pietrasik J, Rutecki S, Ksiazek K. The functional multipotency of transforming growth factor  signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79 (4): 196. doi: 10.1007/s00018-022-04236-y.

117) Young VJ, Brown JK, Saunders PT, Duncan WC, Horne AW. The peritoneum is both a source and target of TGF- in women with endometriosis. PLoS One 2014; 9 (9): e106773. doi: 10.1371/journ al.pone.0106773.

118) Young VJ, Ahmad SF, Duncan WC, Horne AW. The role of TGF- in the pathophysiology of peritoneal endometriosis. Hum Reprod Update 2017; 23 (5): 548-59. doi: 10.1093/humupd/dmx016.

119) Liu YG, Tekmal RR, Binkley PA, Nair HB, Schenken RS, Kirma NB. Induction of epitelial cell invasion and c-fms expression by transforming growth factor beta. Mol Hum Reprod 2009; 15 (10): 665-73. doi: 10.1093/molehr/gap043.

120) Carli C, Metz CN, Al-Abed Y, Naccache PH, Akoum A. Up-regulation of cyclooxigenase-2 expression and prostaglandin E2 production in human endometriotic cells by macrophage migration inhibitory factor: involvement of a novel kinase signaling pathway. Endocrinology 2009; 150 (7): 3128-37. doi: 10.1210/en.2008-1088.

121) Choi HJ, Park MJ, Kim BS, et al. Transforming growth factor 1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression. BMB Rep 2017; 50 (8): 429-34. doi: 10.5483/bmbrep.2017.50.8.097.

122) Starzinski-Powitz A, Handrow-Metzmacher H, Kotzian S. The putative role of cell adhesion molecules in endometriosis: can we learn from tumor metastasis? Mol Med Today 1999; 5 (7): 304-9. doi: 10.1016/s1357-4310(99)01497-5.

123) Jeong SK, Kim JS, Lee CG, et al. Tumor associated macrophages provide the survival resistance of tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated signals. Immunobiology 2017; 222 (1): 55-65. doi: 10.1016/j.imbio.2015.11.010.

124) Mao CL, Seow KM, Chen KH. The utilization of bevacizumab in patients with advanced ovarian cancer: a systematic review of the mechanisms and effects. Int J Mol Sci 2022; 23 (13): 6911. doi: 10.3390/ijms23136911.

125) Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012; 38 (7): 904-10. doi: 10.1016/j.ctrv.2012.04.007.

126) Suryawanshi S, Huang X, Elishaev E, et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res 2014; 20 (23): 6163-74. doi: 10.1158/1078-0432.CCR-14-1338.

127) Kobayashi H. Potential scenarios leading to ovarian cancer arising from endometriosis. Redox Rep 2016; 21(3): 119-26. doi: 10.1179/135100021 5Y.0000000038.

128) Yamaguchi K, Mandai M, Toyokuni S, et al. Contents of endometriotic cysts, especially the high concentrations of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res 2008; 14 (1): 32-40. doi: 10.1158/1078-0432.CCR-07-1614.

129) Scutiero G, Iannone P, Bernardi G, et al. Oxidative stress and endometriosis: A systematic review of the literature. Oxid Med Cell Longev 2017; 2017: 7265238. doi: 10.1155/2017/7265238.

130) Steinbuch SC, LüB AM, Eltrop S, Götte M, Kiesel L. Endometriosis-associated ovarian cancer: From molecular pathologies to clinical relevance. Int J Mol Sci 2024; 25 (8): 4306. doi: 10.3390/ijm s25084306.

131) Yamaguchi K, Mandai M, Oura T, et al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 2010; 29 (12): 1741-52. doi: 10.1038/onc.2009.470.

132) Kajiyama H, Suzuki S, Yoshihara M, et al. Endometriosis and cancer. Free Radic Biol Med 2019; 133: 186-92. doi: 10.1016/j.freeradbiomed.2 018.12.015.

133) Zanetta G, Webb MJ, Li H, Keeney GL. Hyperestrogenism: a relevant risk factor for the development of cancer from endometriosis. Gynecol Oncol 2000; 79 (1): 18-22. doi: 10.1006/gyno.200 0.5905.

134) Marino M, Galluzzo P, Ascenzi P. Estrogen signaling pathways to impact gene transcription. Curr Genomics 2006: 7 (8): 497-508. doi: 10.217 4/138920206779315737.

135) Zhang L, Xiong W, Xiong Y, Liu H, Liu Y. 17 -Estradiol promotes vascular endothelial growth factor expression via the Wnt/-catenin pathway during the pathogenesis of endometriosis. Mol Hum Reprod 2016; 22 (7): 526-35. doi: 10.1093/mo lehr/gaw025.

136) Andersen CL, Boisen MM, Sikora MJ, et al. The evolution of estrogen receptor signaling in the progression of endometriosis to endometriosis-associated ovarian cancer. Horm Cancer 2018; 9 (6): 399-407. doi: 10.1007/s12672-018-0350-9.

137) Nasu K, Kawano Y, Tsukamoto Y, et al. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic agent. J Obstet Gynaecol Res 2011; 37 (7): 683-95. doi: 10.1111/j.1447-0756.2011.01663.x.

138) Munsksgaard PS, Blaakaer J. The association between endometriosis and ovarian cancer: a review of histological, genetic and molecular alterations. Gynecol Oncol 2012; 124 (1): 164-9. doi: 10.1016/j.ygyno.2011.10.001.

139) Rossi M, Seidita I, Vannuccini S, Prisinzano M, Donati C, Petraglia F. Epigenetics, endometriosis and sex steroid receptors: an update on the epigenetic regulatory mechanisms of estrogen and progesterone receptors in patients with endometriosis. Vitam Horm 2023; 122: 171-91. doi: 10.1016/bs.vh.2023.01.007.

140) Monsivais D, Dyson MT, Yin P, et al. ER-- and prostaglandin E2-regulated pathways integrate cell proliferation via Ras-like and estrogen-regulated growth inhibitor in endometriosis. Mol Endocrinol 2014; 28 (8): 1304-15. doi: 10.1210/me.2013-1421.

141) Guo C, Ren F, Wang D, et al. RUNX3 is inactivated by promoter hypermethylation in malignant transformation of ovarian endometriosis. Oncol Rep 2014; 32 (6): 2580-8. doi: 10.3892/or.2 014.3524.

142) Guo SW. Epigenetics of endometriosis. Mol Hum Reprod 2009; 15 (10): 587-607. doi: 10.109 3/molehr/gap064.

143) Yotova I, Hsu E, Do C, et al. Epigenetic alterations affecting transcription factors and signaling pathways in stromal cells of endometriosis. PLoS One 2017; 12 (1): e0170859. doi: 10.1371/journa l.pone.0170859.

144) He J, Chang W, Feng C, Cui M, Xu T. Endometriosis malignant transformation: Epigenetics as a probable mechanism in ovarian tumorigenesis. Int J Genomics 2018; 2018: 1465348. doi: 10.115 5/2018/1465348.

145) Brunty S, Mitchell B, Bou-Zgheib, Santanam N. Endometriosis and ovarian cancer risk, an epigenetic connection. Ann Transl Med 2020; 8 (24): 1715. doi: 10.21037/atm-20-2449.

146) Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28 (10): 1057-68. doi: 10.1038/nbt.1685.

147) Wang D, Guo C, Li Y, et al. Oestrogen up-regulates DNMT1 and leads to hypermethylation of RUNX3 in the malignant transformation of ovarian endometriosis. Reprod Biomed Online 2022; 44 (1): 27-37. doi: 10.1016/j.rbmo.2021.06.030.

148) Wu Y, Strawn E, Starzinski-Powitz A, Guo SW. Prolonged stimulation with tumor necrosis factor- induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil Steril 2008; 90 (1): 234-7. doi: 10.1016/j.fe rtnstert.2007.06.008.

149) Xie H, Chen P, Huang HW, Liu LP, Zhao F. Reactive oxygen species downregulate ARID1A expression via its promoter methylation during the pathogenesis of endometriosis. Eur Rev Med Pharmacol Sci 2014; 21 (20): 4509-15.

150) Gaia-Oltean AI, Braicu C, Gulei D, et al. Ovarian endometriosis, a precursor of ovarian cancer: Histological aspects, gene expression and microRNA alterations (Review). Exp Ther Med 2021; 21 (3): 243. doi: 10.3892/etm.2021.9674.

151) Kyo S, Sato S, Nakayama K. Cancer-associated mutations in normal endometrium: Surprice or expected? Cancer Sci 2020; 111 (10): 3458-67. doi: 10.1111/cas.14571.

152) Wu Y, Basir Z, Kajdacsy-Balla A, et al. Resolution of clonal origins for endometriotic lesions using laser capture microdissection and the human androgen receptor (HUMARA) assay. Fertil Steril 2003; 79 suppl 1: 710-7. doi: 10.1016/s0015-0282(02)04821-5.

153) Yano T, Jimbo H, Yoshikawa H, Tsutsumi O, Taketani Y. Molecular analysis of clonality in ovarian endometrial cysts. Gynecol Obstet Invest 1999; 47 suppl 1: 41-5. doi: 10.1159/000052858.

154) Adilvayeva A, Kunz J. Pathogenesis of endometriosis and endometriosis-associated cancers. Int J Mol Sci 2024; 25 (14): 7624. doi: 10.3390/ijm s25147624.

155) Suda K, Cruz Diaz LA, Yoshihara K, et al. Clonal lineage from normal endometrium to ovarian clear cell carcinoma through ovarian endometriosis. Cancer Sci 2020; 111 (8): 3000-9. doi: 10.1111/c as.14507.

156) Mutter GL, Monte NM, Neuberg D, Ferenczy A, Eng C. Emergence, involution, and progression to carcinoma of mutant clones in normal endometrial tissues. Cancer Res 2014; 74 (10): 2796-802. doi: 10.1158/0008-5472.CAN-14-0108.

157) Maruyama TA. Revised stem cell theory for the pathogenesis of endometriosis. J Pers Med 2022; 12 (2): 216. doi: 10.3390/jpm12020216.

158) Noë M, Ayhan A, Wang TL, Shih IM. Independent development of endometrial epithelium and stroma within the same endometriosis. J Pathol 2018; 245 (3): 265-9. doi: 10.1002/path.5082.

159) Wilczynski JR, Szubert , Paradowska E, Wilczyński M. Endometriosis stem cells as a possible main target for carcinogenesis of endometriosis-associated ovarian cancer (EAOC). Cancers (Basel) 2022; 15 (1): 111. doi: 10.3390/can cers15010111.

160) Suda K, Nakaoka H, Yoshihara K, et al. Different mutation profiles between epithelium and stroma in endometriosis and normal endometrium. Hum Reprod 2019; 34 (10): 1899-905. doi: 10.109 3/humrep/dez155.

161) Bulun SE, Wang Y, Matei D. Epithelial mutations in endometriosis: link to ovarian cancer. Endocrinology 2019; 160 (3): 626-38. doi: 10.121 0/en.2018-00794.

162) Paik DY, Jansen DM, Schafenacker AM, et al. Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells 2012; 30 (11): 2487-97. doi: 10.1002/stem.1207.

163) Okamoto S, Okamoto A, Nikaido T, et al. Mesenchymal to epithelial transition in the human ovarian surface epithelium focusing on inclusion cysts. Oncol Rep 2009; 21 (5): 1209-14. doi: 10.38 92/or_00000343.

164) Konrad L, Dietze R, Riaz MA, et al. Epithelial-Mesenchymal transition in endometriosis – When does it happen? J Clin Med 2020; 9 (6): 1915. doi: 10.3390/jcm9061915.

165) Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norms. J Cell Physiol 2007; 213 (3): 581-8. doi: 10.1002/jcp.21240.

166) Okamura H, Katabuchi H. Detailed morphology of human surface epithelium focusing on its metaplastic and neoplastic capability. Ital J Anat Embryol 2001; 106 (2 suppl 2): 263-76.

167) Sugiyama T, Kamura T, Kigawa J, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 2000; 88 (11): 2584-9.

168) Schwartz DR, Kardia SL, Shedden KA, et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 2002; 62 (16): 4722-9.

169) Yamaguchi K, Huang Z, Matsumura N, et al. Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer 2014; 135 (3): 585-97. doi: 10.1002/ijc.28701.

170) Tsuchiya A, Sakamoto N, Yasuda J, et al. Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor -1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol 2003; 163 (6): 2503-12. doi: 10.10 16/s0002-9440(10)63605-x.

171) Kobayashi H, Yamada Y, Kanayama S, et al. The role of hepatocyte nuclear factor-1 in the pathogenesis of clear cell carcinoma of the ovary. Int J Gynecol Cancer 2009; 19 (3): 471-9. doi: 10.1 111/IGC.0b013e3181a19eca.

172) Kajihara H, Yamada, Shigetomi H, Higashiura Y, Kobayashi H. The dichotomy in the histogenesis of endometriosis-associated ovarian cancer: clear cell-type versus endometrioid-type adenocarcinoma. Int J Gynecol Pathol 2012; 31(4): 304-12. doi: 10.1097/PGP.0b013e318243a97b.

173) Okamoto T, Mandai M, Matsumura N, et al. Hepatocyte nuclear factor-1 (HNF-1) promotes glucose uptake and glycolytic activity in ovarian clear cell carcinoma. Mol Carcinog 2015; 54 (1): 35-49. doi: 10.1002/mc.22072.

174) Mandai M, Amano Y, Yamaguchi K, Matsumura N, Baba T, Konishi I. Ovarian clear cell carcinoma meets metabolism; HNF-1 confers survival benefits through the Warburg effect and ROS reduction. Oncotarget 2015; 6 (31): 30704-14. doi: 10.18632/oncotarget.5228.

175) Kajihara H, Yamada Y, Kanayama S, et al. Clear cell carcinoma of the ovary: Potential pathogenic mechanisms (Review). Oncol Rep 2010; 23 (5): 1193-203. doi: 10.3892/or_00000750.

176) Fujimura M, Hidaka T, Kataoka K, et al. Absence of estrogen receptor-alpha expression in human ovarian clear cell adenocarcinoma compared with ovarian serous, endometrioid, and mucinous adenocarcinoma. Am J Surg Pathol 2001; 25 (5): 667-72. doi: 10.1097/00000478-200105000-00016.

177) Akahane T, Sekizawa A, Okuda T, Kushima M, Saito H, Okai T. Disappearance of steroid hormone dependency during malignant transformation of ovarian clear cell cancer. Int J Gynecol Pathol 2005; 24 (4): 369-76. doi: 10.1097/01.pgp.00001 65173.90339.a2.

178) Yano M, Katoh H, Miyasawa M, et al. Clinicopathological correlation of ARID1A status with HDAC6 and its related factors in ovarian clear cell carcinoma. Sci Rep 2019; 9 (1): 2397. doi: 10.1038/s41598-019-38653-0.

179) Tong A, Xiangjie D, Zhao X, Liang X. Review the progression of ovarian clear cell carcinoma from the perspective of genomics and epigenomics. Front Genet 2023; 14: 952379. doi: 10.3389/fge ne.2023.952379.

180) Mandai M, Matsumura N, Baba T, Yamaguchi K, Hamanishi J, Konishi I. Ovarian clear cell carcinoma as a stress-responsive cancer: Influence of the microenvironment on the carcinogenesis and cancer phenotype. Cancer Lett 2011; 310 (2): 129-33. doi: 10.1016/j.canlet.2011.06.039.

181) Lim D, Murali R, Murray MP, Veras E, Park KJ, Soslow RA. Morphological and immunohistochemical re-evaluation of tumors initially diagnosed as ovarian endometrioid carcinoma with emphasis on high-grade tumors. Am J Surg Pathol 2016; 40 (3): 302-12. doi: 10.1097/PAS.0000000000000550.

182) Hollis RL, Thompson JP, Stanley B, et al. Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat Commun 2020; 11 (1): 4995. doi: 10.1038/s41467-020-18819-5.

183) Cochrane DR, Tessier-Cloutier B, Lawrence KM, et al. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin. J Pathol 2017; 243 (1): 26-36. doi: 10.10 02/path.4934.

184) Kolin DL, Dinulescu DM, Crum CP. Origin of clear carcinoma: nature or nurture? J Pathol 2018; 244 (2): 131-4. doi: 10.1002/path.5009.

185) Beddows I, Fan H, Heinze K, et al. Cell state of origin impacts development of distinct endometriosis-related ovarian carcinoma histotypes. Cancer Res 2024; 84 (1): 26-38. doi: 10.1158/0008-5472.CAN-23-1362.