Status and Future Management of Congenital Cytomegalovirus and Neonatal Herpes Simplex Virus Infections
Main Article Content
Abstract
Congenital cytomegalovirus (CMV) and herpes simplex virus (HSV) infections are among the most common viral infections of the newborn in the developed world. CMV infections can cause sensorineural hearing loss, and both CMV and HSV infections can lead to impaired neurodevelopment. Diagnostic and treatment efforts have been investigated for the past 45 years. With the development of polymerase chain reaction (PCR) for diagnosis and its quantitation as well as studies of the pharmacokinetics and pharmacodynamics of ganciclovir/valganciclovir (CMV) and acyclovir (HSV), significant improvement in outcome has been achieved. For example, studies utilizing ganciclovir and valganciclovir demonstrate improved hearing and Bailey Developmental scores; however, therapy requires six months of treatment with valganciclovir. With neonatal HSV infections, high-dose acyclovir decreases mortality for two classifications of disease - encephalitis and disseminated multiorgan infection. Like congenital CMV infections, neonatal HSV requires long-term suppressive therapy following a course of IV acyclovir. Regardless, outcome for both diseases is unsatisfactory, and improved treatment approaches must be developed.
The current review addresses these two members of the Herpesviridae family: the diseases they cause in the newborn, the current shortcomings and a consideration of future needs. Both viruses establish latency and are reactivated throughout an individual’s lifetime, ergo eradication at the present is impossible. The discussion is limited to these two life-threatening diseases. The successful lessons learned from combination therapies of human immunodeficiency virus and hepatitis C virus infections must be applied to these diseases. If improvement can be documented, it will have direct implications for managing diseases caused by both viruses in older individuals. It is the aim of the review to provide the reader with knowledge of the field, providing a reference to future needs and opportunities.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Fowler K, Mucha J, Neumann M, et al. A systematic literature review of the global seroprevalence of cytomegalovirus: possible implications for treatment, screening, and vaccine development. BMC Public Health. 2022;22(1):1659. Published 2022 Sep 1. doi:10.1186/s12889-022-13971-7
3. Clinical overview of CMV and congenital CMV. Centers for Disease Control and Prevention. Accessed September 25, 2024. https://www.cdc.gov/cytomegalovirus/hcp/clinical-overview/.
4. American Academy of Pediatrics. Red Book. 2024-2027 Report of the Committee on Infectious Diseases. 33rd Edition.
5. Kabani N, Ross SA. Congenital Cytomegalovirus Infection. J Infect Dis. 2020;221 (Suppl 1):S9-S14. doi:10.1093/infdis/jiz446
6. Pinninti SG, Rodgers MD, Novak Z, et al. Clinical Predictors of Sensorineural Hearing Loss and Cognitive Outcome in Infants with Symptomatic Congenital Cytomegalovirus Infection. Pediatr Infect Dis J. 2016;35(8):924-926. doi:10.1097/INF.0000000000001194
7. Dreher AM, Arora N, Fowler KB, et al. Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J Pediatr. 2014;164(4):855-859.
doi:10.1016/j.jpeds.2013.12.007
8. Cannon MJ. Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol. 2009;46 Suppl 4:S6-S10. doi:10.1016/j.jcv.2009.09.002
9. Diaz-Decaro J, Myers E, Mucha J, et al. A systematic literature review of the economic and healthcare resource burden of cytomegalovirus. Curr Med Res Opin. 2023;39(7):973-986.
doi:10.1080/03007995.2023.2222583
10. Meyers J, Sinha A, Samant S, Candrilli S. The Economic Burden of Congenital Cytomegalovirus Disease in the First Year of Life: A Retrospective Analysis of Health Insurance Claims Data in the United States. Clin Ther. 2019;41(6):1040-1056.e3. doi:10.1016/j.clinthera.2019.04.022
11. Lucas A, Sinha A, Fowler KB, et al. A framework for assessing the lifetime economic burden of congenital cytomegalovirus in the United States. Cost Eff Resour Alloc. 2019;17:21. Published 2019 Oct 3. doi:10.1186/s12962-019-0189-0
12. Grosse SD, Dollard SC, Ortega-Sanchez IR. Economic assessments of the burden of congenital cytomegalovirus infection and the cost-effectiveness of prevention strategies. Semin Perinatol. 2021; 45(3):151393. doi:10.1016/j.semperi.2021.151393
13. Stephan AJ, de Lepper M, Wölle R, et al. Healthcare costs of congenital cytomegalovirus (cCMV) disease in infants during the first two years of life: a retrospective German claims database analysis. Cost Eff Resour Alloc. 2023;21(1):8. Published 2023 Jan 23. doi:10.1186/s12962-022-00411-x
14. Newborn Screening. National CMV Foundation. Accessed September 25, 2024. https://www.nationalcmv.org/overview/newborn-screening
15. Fowler KB, McCollister FP, Sabo DL, et al. A Targeted Approach for Congenital Cytomegalovirus Screening Within Newborn Hearing Screening. Pediatrics. 2017;139(2):e20162 128. doi:10.1542/peds.2016-2128
16. Gantt S, Dionne F, Kozak FK, et al. Cost-effectiveness of Universal and Targeted Newborn Screening for Congenital Cytomegalovirus Infection. JAMA Pediatr. 2016;170(12):1173-1180.
doi:10.1001/jamapediatrics.2016.2016
17. Phillips VL, Xu J, Park A, Gantt S, Dedhia K. The cost-effectiveness of targeted screening for congenital cytomegalovirus in newborns compared to clinical diagnosis in the US. Int J Pediatr Otorhinolaryngol. 2023;166:111450. doi:10.1016/j.ijporl.2023.111450
18. Chen K, Zhong Y, Gu Y, et al. Estimated Cost-effectiveness of Newborn Screening for Congenital Cytomegalovirus Infection in China Using a Markov Model. JAMA Netw Open. 2020;3 (12):e2023949. doi:10.1001/jamanetworkopen.2020.23949
19. Pasternak Y, Oikawa MT, Mendelson E, Osovsky M, Klinger G, Bilavsky E. Diagnosing congenital cytomegalovirus by saliva on Guthrie paper. J Clin Virol. 2020;126:104337. doi:10.1016/j.jcv.2020.104337
20. Rawlinson WD, Boppana SB, Fowler KB, et al. Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis. 2017;17(6):e177-e188. doi:10.1016/S1473-3099(17)30143-3
21. Shim GH. Treatment of congenital cytomegalovirus infection. Clin Exp Pediatr. 2023; 66(9):384-394. doi:10.3345/cep.2022.01032
22. Kimberlin DW, Lin CY, Sánchez PJ, et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr. 2003;143(1):16-25. doi:10.1016/s0022-3476(03)00192-6
23. Kimberlin DW, Acosta EP, Sánchez PJ, et al. Pharmacokinetic and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease. J Infect Dis. 2008;197(6):836-845. doi:10.1086/528376
24. Torii Y, Horiba K, Kawada JI, et al. Detection of antiviral drug resistance in patients with congenital cytomegalovirus infection using long-read sequencing: a retrospective observational study. BMC Infect Dis. 2022;22(1):568. Published 2022 Jun 22. doi:10.1186/s12879-022-07537-6
25. Garofoli F, Lombardi G, Angelini M, Campanini G, Zavattoni M, Baldanti F. Onset of valganciclovir resistance in two infants with congenital cytomegalovirus infection. Int J Infect Dis. 2020;98:150-152. doi:10.1016/j.ijid.2020.06.087
26. Morillo-Gutierrez B, Waugh S, Pickering A, Flood T, Emonts M. Emerging (val)ganciclovir resistance during treatment of congenital CMV infection: a case report and review of the literature. BMC Pediatr. 2017;17(1):181. Published 2017 Aug 22. doi:10.1186/s12887-017-0933-6
27. Kimberlin DW, Jester PM, Sánchez PJ, et al. Valganciclovir for symptomatic congenital cytomegalovirus disease. N Engl J Med. 2015;372(10):933-943. doi:10.1056/NEJMoa1404599
28. A safety assessment of oral letermovir in infants with symptomatic congenital cytomegalovirus. ClinicalTrials.gov ID NCT06118515. Updated September 23, 2024. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT06118515
29. Lanzieri TM, Pesch MH, Grosse SD. Considering Antiviral Treatment to Preserve Hearing in Congenital CMV. Pediatrics. 2023;151 (2):e2022059895. doi:10.1542/peds.2022-059895
30. De Cuyper E, Acke F, Keymeulen A, Dhooge I. The Effect of (Val) ganciclovir on Hearing in Congenital Cytomegalovirus: A Systematic Review. Laryngoscope. 2022;132(11):2241-2250. doi:10.1002/lary.30027
31. Dorfman L, Amir J, Attias J, Bilavsky E. Treatment of congenital cytomegalovirus beyond the neonatal period: an observational study. Eur J Pediatr. 2020;179(5):807-812. doi:10.1007/s00431-019-03558-7
32. Kimberlin DW, Aban I, Peri K, et al. Oral Valganciclovir Initiated Beyond 1 Month of Age as Treatment of Sensorineural Hearing Loss Caused by Congenital Cytomegalovirus Infection: A Randomized Clinical Trial. J Pediatr. 2024;268:113934. doi:10.1016/j.jpeds.2024.113934
33. Congenital Cytomegalovirus: Efficacy of Antiviral Treatment (CONCERT 2). ClinicalTrials.gov ID NCT02005822. Updated June 3, 2021. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT02005822
34. Valganciclovir Therapy in Infants and Children With Congenital CMV Infection and Hearing Loss. ClinicalTrials.gov ID NCT01649869. Updated June 2, 2021. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT01649869
35. Randomized Controlled Trial of Valganciclovir for Cytomegalovirus Infected Hearing Impaired Infants (ValEAR). ClinicalTrials.gov ID NCT03107871. Updated February 24, 2022. Accessed September 25, 2024.
https://clinicaltrials.gov/study/NCT03107871
36. Asymptomatic Congenital CMV Treatment. ClinicalTrials.gov ID NCT03301415. Updated January 26, 2023. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT03301415
37. Chung PK, Schornagel FAJ, Soede W, et al. Valganciclovir in Infants with Hearing Loss and Clinically Inapparent Congenital Cytomegalovirus Infection: A Nonrandomized Controlled Trial. J Pediatr. 2024;268:113945.
doi:10.1016/j.jpeds.2024.113945
38. Lanzieri TM, Caviness AC, Blum P, Demmler-Harrison G; Congenital Cytomegalovirus Longitudinal Study Group . Progressive, Long-Term Hearing Loss in Congenital CMV Disease After Ganciclovir Therapy. J Pediatric Infect Dis Soc. 2022;11(1):16-23. doi:10.1093/jpids/piab095
39. Leruez-Ville M, Ville Y. Secondary prevention of congenital cytomegalovirus infection. Lancet. 2020;396(10253):739-741. doi:10.1016/S0140-6736(20)31903-6
40. Kadambari S, Evans C, Lyall H. Congenital Infections: Priorities and Possibilities for Resource-limited Settings. Pediatr Infect Dis J. 2023;42 (2):e45-e47. doi:10.1097/INF.0000000000003710
41. Barber V, Calvert A, Vandrevala T, et al. Prevention of Acquisition of Cytomegalovirus Infection in Pregnancy Through Hygiene-based Behavioral Interventions: A Systematic Review and Gap Analysis. Pediatr Infect Dis J. 2020;39(10):949-954. doi:10.1097/INF.0000000000002763
42. Revello MG, Tibaldi C, Masuelli G, et al. Prevention of Primary Cytomegalovirus Infection in Pregnancy. EBioMedicine. 2015;2(9):1205-1210. Published 2015 Aug 6. doi:10.1016/j.ebiom.2015.08.003
43. Benou S, Dimitriou G, Papaevangelou V, Gkentzi D. Congenital cytomegalovirus infection: do pregnant women and healthcare providers know enough? A systematic review. J Matern Fetal Neonatal Med. 2022;35(25):6566-6575. doi:10.1080/14767058.2021.1918088
44. Vena F, D'Ambrosio V, Pajno C, et al. Pregnant women's knowledge and behaviour to prevent cytomegalovirus infection: an observational study. J Perinat Med. 2020;49(3):327-332. Published 2020 Oct 23. doi:10.1515/jpm-2020-0301
45. Castillo K, Hawkins-Villarreal A, Valdés-Bango M, et al. Congenital Cytomegalovirus Awareness and Knowledge among Health Professionals and Pregnant Women: An Action towards Prevention. Fetal Diagn Ther. 2022;49(5-6):265-272. doi:10.1159/000525528
46. Xie M, Tripathi T, Holmes NE, Hui L. Serological screening for cytomegalovirus during pregnancy: A systematic review of clinical practice guidelines and consensus statements. Prenat Diagn. 2023;43(7):959-967. doi:10.1002/pd.6397
47. Fisher SA, Miller ES, Yee LM, Grobman WA, Premkumar A. Universal first-trimester cytomegalovirus screening and valaciclovir prophylaxis in pregnant persons: a cost-effectiveness analysis. Am J Obstet Gynecol MFM. 2022;4(5):100676. doi:10.1016/j.aj ogmf.2022.100676
48. Kagan KO, Enders M, Schampera MS, et al. Prevention of maternal-fetal transmission of cytomegalovirus after primary maternal infection in the first trimester by biweekly hyperimmunoglobulin administration. Ultrasound Obstet Gynecol. 2019; 53(3):383-389. doi:10.1002/uog.19164
49. Hughes BL, Clifton RG, Rouse DJ, et al. A Trial of Hyperimmune Globulin to Prevent Congenital Cytomegalovirus Infection. N Engl J Med. 2021; 385(5):436-444. doi:10.1056/NEJMoa1913569
50. Revello MG, Lazzarotto T, Guerra B, et al. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med. 2014;370(14):1316-1326. doi:10.1056/NEJMoa1310214
51. Chatzakis C, Shahar-Nissan K, Faure-Bardon V, et al. The effect of valacyclovir on secondary prevention of congenital cytomegalovirus infection, following primary maternal infection acquired periconceptionally or in the first trimester of pregnancy. An individual patient data meta-analysis. Am J Obstet Gynecol. 2024;230(2):109-117.e2. doi:10.1016/j.ajog.2023.07.022
52. Zammarchi L, Tomasoni LR, Liuzzi G, et al. Treatment with valacyclovir during pregnancy for prevention of congenital cytomegalovirus infection: a real-life multicenter Italian observational study. Am J Obstet Gynecol MFM. 2023;5(10):101101. doi:10.1016/j.ajogmf.2023.101101
53. Shahar-Nissan K, Pardo J, Peled O, et al. Valaciclovir to prevent vertical transmission of cytomegalovirus after maternal primary infection during pregnancy: a randomised, double-blind, placebo-controlled trial [published correction appears in Lancet. 2020 Oct 10;396(10257):1070. doi: 10.1016/S0140-6736(20)32075-4]. Lancet. 2020;396(10253):779-785. doi:10.1016/S0140-6736(20)31868-7
54. Faure-Bardon V, Fourgeaud J, Stirnemann J, Leruez-Ville M, Ville Y. Secondary prevention of congenital cytomegalovirus infection with valacyclovir following maternal primary infection in early pregnancy. Ultrasound Obstet Gynecol. 2021;58(4) :576-581. doi:10.1002/uog.23685
55. D'Antonio F, Marinceu D, Prasad S, Khalil A. Effectiveness and safety of prenatal valacyclovir for congenital cytomegalovirus infection: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2023;61(4):436-444. doi:10.1002/uog.26136
56. Prenatal Treatment of Congenital Cytomegalovirus Infection with Letermovir Versus Valaciclovir (CYMEVAL3-step2). ClinicalTrials.gov ID NCT05446571. Updated September 4, 2024. Accessed September 25, 2024.
https://clinicaltrials.gov/study/NCT05446571
57. Institute of Medicine (US) Committee to Study Priorities for Vaccine Development, Stratton KR, Durch JS, Lawrence RS, eds. Vaccines for the 21st Century: A Tool for Decisionmaking. Washington (DC): National Academies Press (US); 2000.
58. CMV Vaccines and clinical trials. National CMV Foundation. Accessed September 25, 2024. https://www.nationalcmv.org/overview/vaccine-development
59. Boppana SB, van Boven M, Britt WJ, et al. Vaccine value profile for cytomegalovirus. Vaccine. 2023;41 Suppl 2:S53-S75. doi:10.1016/j.vaccine.2023.06.020
60. Plotkin SA, Boppana SB. Vaccination against the human cytomegalovirus. Vaccine. 2019;37(50): 7437-7442. doi:10.1016/j.vaccine.2018.02.089
61. Pass RF, Zhang C, Evans A, et al. Vaccine prevention of maternal cytomegalovirus infection. N Engl J Med. 2009;360(12):1191-1199. doi:10.1056/NEJMoa0804749
62. Bernstein DI, Munoz FM, Callahan ST, et al. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial. Vaccine. 2016;34(3):313-319.
doi:10.1016/j.vaccine.2015.11.056
63. Hu X, Karthigeyan KP, Herbek S, et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. J Infect Dis. 2024;230(2):455-466. doi:10.1093/infdis/jiad593
64. A Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1647 Cytomegalovirus (CMV) Vaccine in Healthy Participants 16 to 40 Years of Age. ClinicalTrials.gov ID NCT05085366. Updated April 24, 2024. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT05085366
65. Rouse DJ, Fette LM, Hughes BL, et al. Noninvasive Prediction of Congenital Cytomegalovirus Infection After Maternal Primary Infection. Obstet Gynecol. 2022;139(3):400-406. doi:10.1097/AOG.0000000000004691
66. Chatzakis C, Sotiriadis A, Dinas K, Ville Y. Neonatal and long-term outcomes of infants with congenital cytomegalovirus infection and negative amniocentesis: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2023;61(2):1 58-167. doi:10.1002/uog.26128
67. Dinsmoor MJ, Fette LM, Hughes BL, et al. Amniocentesis to diagnose congenital cytomegalovirus infection following maternal primary infection. Am J Obstet Gynecol MFM. 2022;4(4):100641. doi:10.1016/j.ajogmf.2022.100641
68. Bourgon N, Fitzgerald W, Aschard H, et al. Cytokine Profiling of Amniotic Fluid from Congenital Cytomegalovirus Infection. Viruses. 2022;14(10):2145. Published 2022 Sep 28. doi:10.3390/v14102145
69. Biomarkers of Cytomegalovirus Fetal Infection and Disease (BIO-CCMV). ClinicalTrials.gov ID NCT03090841. Updated November 7, 2022. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT03090841
70. Fernandes ND, Arya K, Syed HA, Ward R. Congenital Herpes Simplex. In: StatPearls. Treasure Island (FL): StatPearls Publishing; April 21, 2024.
71. Slutsker JS, Schillinger JA. Assessing the Burden of Infant Deaths Due to Herpes Simplex Virus, Human Immunodeficiency Virus, and Congenital Syphilis: United States, 1995 to 2017. Sex Transm Dis. 2021;48(8S):S4-S10. doi:10.1097/OLQ.0000000000001458
72. James SH, Kimberlin DW. Neonatal herpes simplex virus infection: epidemiology and treatment. Clin Perinatol. 2015;42(1):47-viii. doi:10.1016/j.clp.2014.10.005
73. Samies NL, James SH. Prevention and treatment of neonatal herpes simplex virus infection. Antiviral Res. 2020;176:104721. doi:10.1016/j.antiviral.2020.104721
74. Pinninti SG, Kimberlin DW. Neonatal herpes simplex virus infections. Pediatr Clin North Am. 2013;60(2):351-365. doi:10.1016/j.pcl.2012.12.005
75. Mahant S, Hall M, Schondelmeyer AC, et al. Neonatal Herpes Simplex Virus Infection Among Medicaid-Enrolled Children: 2009-2015. Pediatrics. 2019;143(4):e20183233. doi:10.1542/peds.2018-3233
76. Herpes Simplex Virus. World Health Organization (WHO). Accessed September 25, 2024. https://www.who.int/home/search-results?indexCatalogue=genericsearchindex1&searchQuery=neonatal%20herpes&wordsMode=AnyWord
77. Looker KJ, Magaret AS, May MT, et al. First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob Health. 2017;5(3):e300-e309. doi:10.1016/S2214-109X(16) 30362-X
78. Cruz AT, Freedman SB, Kulik DM, et al. Herpes Simplex Virus Infection in Infants Undergoing Meningitis Evaluation. Pediatrics. 2018;141(2):e20 171688. doi:10.1542/peds.2017-1688
79. Thompson C, Whitley R. Neonatal herpes simplex virus infections: where are we now?. Adv Exp Med Biol. 2011;697:221-230. doi:10.1007/978-1-4419-7185-2_15
80. Melvin AJ, Mohan KM, Vora SB, Selke S, Sullivan E, Wald A. Neonatal Herpes Simplex Virus Infection: Epidemiology and Outcomes in the Modern Era. J Pediatric Infect Dis Soc. 2022;11(3): 94-101. doi:10.1093/jpids/piab105
81. Kimberlin DW, Lin CY, Jacobs RF, et al. Natural history of neonatal herpes simplex virus infections in the acyclovir era. Pediatrics. 2001; 108(2):223-229. doi:10.1542/peds.108.2.223
82. Kimberlin DW, Lin CY, Jacobs RF, et al. Safety and efficacy of high-dose intravenous acyclovir in the management of neonatal herpes simplex virus infections. Pediatrics. 2001;108(2):2 30-238. doi:10.1542/peds.108.2.230
83. Kimberlin DW, Whitley RJ, Wan W, et al. Oral acyclovir suppression and neurodevelopment after neonatal herpes. N Engl J Med. 2011;365 (14):1284-1292. doi:10.1056/NEJMoa1003509
84. Harris JB, Holmes AP. Neonatal Herpes Simplex Viral Infections and Acyclovir: An Update. J Pediatr Pharmacol Ther. 2017;22(2):88-93. doi:10.5863/1551-6776-22.2.88
85. Frobert E, Burrel S, Ducastelle-Lepretre S, et al. Resistance of herpes simplex viruses to acyclovir: an update from a ten-year survey in France. Antiviral Res. 2014;111:36-41. doi:10.1016/j.antiviral.2014.08.013
86. James SH, Prichard MN. Current and future therapies for herpes simplex virus infections: mechanism of action and drug resistance. Curr Opin Virol. 2014;8:54-61. doi:10.1016/j.coviro.2014.06.003
87. James SH, Larson KB, Acosta EP, Prichard MN. Helicase-primase as a target of new therapies for herpes simplex virus infections. Clin Pharmacol Ther. 2015;97(1):66-78. doi:10.1002/cpt.3
88. Uhlig N, Donner AK, Gege C, Lange F, Kleymann G, Grunwald T. Helicase primase inhibitors (HPIs) are efficacious for therapy of human herpes simplex virus (HSV) disease in an infection mouse model. Antiviral Res. 2021;195: 105190. doi:10.1016/j.antiviral.2021.105190
89. Valacyclovir in Neonatal Herpes Simplex Virus Disease. ClinicalTrials.gov ID NCT04448392. Updated September 19, 2024. Accessed September 25, 2024. https://clinicaltrials.gov/study/NCT04448392
90. James SH, Sheffield JS, Kimberlin DW. Mother-to-Child Transmission of Herpes Simplex Virus. J Pediatric Infect Dis Soc. 2014;3 Suppl 1(Suppl 1):S19-S23. doi:10.1093/jpids/piu050
91. Management of Genital Herpes in Pregnancy: ACOG Practice Bulletinacog Practice Bulletin, Number 220. Obstet Gynecol. 2020;135(5):e193-e202. doi:10.1097/AOG.0000000000003840
92. Gardella C, Huang ML, Wald A, et al. Rapid polymerase chain reaction assay to detect herpes simplex virus in the genital tract of women in labor. Obstet Gynecol. 2010;115(6):1209-1216. doi:10.1097/AOG.0b013e3181e01415
93. Kimberlin DW, Baley J; Committee on infectious diseases; Committee on fetus and newborn. Guidance on management of asymptomatic neonates born to women with active genital herpes lesions. Pediatrics. 2013;131(2):e635-e646. doi:10.1542/peds.2012-3216
94. Backes IM, Leib DA, Ackerman ME. Monoclonal antibody therapy of herpes simplex virus: An opportunity to decrease congenital and perinatal infections. Front Immunol. 2022;13:959 603. Published 2022 Aug 9.
doi:10.3389/fimmu.2022.959603
96. 2023-2028 NIH Strategic plan for Herpes Simplex Virus Research. Accessed September 25, 2024. https://www.niaid.nih.gov/sites/default/files/nih-herpes-simplex-strategic-plan-2023.pdf