Shaking Up Bone Regeneration: A Review of Nanovibrational Stimulation on Signalling Pathways in the Pursuit of a Cellular Therapy-Based Bone Graft Substitute

Main Article Content

M. McCormick M. Dalby R. D. Meek D. W. Shields

Abstract

The demand for a viable alternative to currently available bone grafts continues to grow as the clinical need to fill or augment bone defects increases. Defects in bone due to trauma, infection, malignancy or metabolic bone disease provide unique challenges in treatment.  Optimal graft bio characteristics should provide structure, osteogenesis, osteo-induction and osteo-conduction. To achieve this, consideration of cells and materials is required.


Approaches such as nanovibrational stimulation have provided advancements in driving mesenchymal stem cells toward osteoblastogensis, by activating mechanotransductive signalling pathways. Combining the technology of nanovibrational bioreactors with 3D collagen scaffolds has provided further insight into the role of mechanoreceptors in addition to presenting challenges in optimising the stiffness of such scaffolds to transmit the required frequency needed to induce osteoblastogenesis. Advancing this technology could provide opportunity for scalable production of osteoblastogenic cells within natural or synthetic 3D scaffolds.


Successful exogenous osteogenesis of bone forming cells in suitable scaffolding materials could unlock a cascade of treatment avenues previously unattainable, expanding opportunities of reconstructive surgery and improving limb salvage procedures. This article aims to review advances in osteoblast stimulation and scaffolds and discuss the limitations and potential applications of the technologies in a clinical setting.

Article Details

How to Cite
MCCORMICK, M. et al. Shaking Up Bone Regeneration: A Review of Nanovibrational Stimulation on Signalling Pathways in the Pursuit of a Cellular Therapy-Based Bone Graft Substitute. Medical Research Archives, [S.l.], v. 12, n. 11, dec. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5977>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v12i11.5977.
Section
Review Articles

References

1. Yaszemski MJ, Paynets RG, Hayess WC, Lange6 R, Mikos AG. Evolution of Bone Transplantation: Molecular, Cellular and Tissue Strategies to Engineer Human Bone*. Vol 17.; 1996.
2. Giannoudis P V., Chris Arts JJ, Schmidmaier G, Larsson S. What should be the characteristics of the ideal bone graft substitute? Injury. 2011;42(SUPPL. 2):S1. doi:10.1016/j.injury.2011.06.001
3. Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 2011;42(SUPPL. 2). doi:10.1016/j.injury.2011.06.014
4. Giannoudis P V. Fracture healing and bone regeneration: Autologous bone grafting or BMPs? Injury. 2009;40(12):1243-1244. doi:10.1016/j.injury.2009.10.004
5. Lomas R, Chandrasekar A, Board TN. Bone allograft in the UK: Perceptions and realities. HIP International. 2013;23(5):427-433. doi:10.5301/hipint.5000018
6. Myeroff C, Archdeacon M. Autogenous bone graft: Donor sites and techniques. Journal of Bone and Joint Surgery. 2011;93(23):2227-2236. doi:10.2106/JBJS.J.01513
7. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis P V. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury. 2011;42(SUPPL. 2). doi:10.1016/j.injury.2011.06.015
8. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019;33(4):203-213. doi:10.1097/BOT.0000000000001420
9. Finkemeier CG. COPYRIGHT © 2002 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED Bone-Grafting and Bone-Graft Substitutes.; 2002. http://journals.lww.com/jbjsjournal
10. Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone Defects. Tissue Eng Part B Rev. 2021;27(6):539-547. doi:10.1089/ten.teb.2020.0281
11. Wildemann B, Kadow-Romacker A, Haas NP, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007;81(2):437-442. doi:10.1002/jbm.a.31085
12. Lee CH, Singla A, Lee Y. Biomedical Applications of Collagen. Vol 221.; 2001. www.elsevier.com/locate/ijpharm
13. Tsimbouri PM, Childs PG, Pemberton GD, et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat Biomed Eng. 2017;1(9):758-770. doi:10.1038/s41551-017-0127-4
14. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126(4):677-689. doi:10.1016/j.cell.2006.06.044
15. Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979-987. doi:10.1038/nmat4051
16. Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27(13):2651-2670. doi:10.1016/j.biomaterials.2005.12.002
17. Yu NYC, Schindeler A, Little DG, Ruys AJ. Biodegradable poly(α-hydroxy acid) polymer scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;93(1):285-295. doi:10.1002/jbm.b.31588
18. Legeros RZ. Properties of Osteoconductive Biomaterials: Calcium Phosphates List of Abbreviations Used BMP Bone Morphogenetic Protein ECM Extracellular Matrix MSC Mesenchymal Stem Cell. Vol 395.; 2002. http://journals.lww.com/clinorthop
19. Bohner M. Calcium Orthophosphates in Medicine: From Ceramics to Calcium Phosphate Cements. Vol 3.; 2000. www.elsevier.comllocate/injury
20. Galgano L, Hutt D, Mekelenkamp H. HSCT: How Does It Work? In: The European Blood and Marrow Transplantation Textbook for Nurses. Springer International Publishing; 2023:25-43. doi:10.1007/978-3-031-23394-4_2
21. Caplan AI. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991;9(5):641-650. doi:10.1002/jor.1100090504
22. Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35-42. doi:10.1038/nm.3028
23. Campsie P, Childs PG, Robertson SN, et al. Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-49422-4
24. Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov. 2024;10(1). doi:10.1038/s41421-024-00689-6
25. Mark D. Miller, Stephen R Thompson. Miller’s Review of Orthopaedics. 8th ed. Elsevier; 2020.
26. White TO, Mackenzie SP, Gray AJ, McRae R. McRae’s Orthopaedic Trauma and Emergency Fracture Management. 3rd Edition. Elsevier; 2016.; 2016.
27. Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8(5):727-738. doi:10.1016/j.devcel.2005.02.013
28. Robertson SN, Campsie P, Childs PG, et al. Control of cell behaviour through nanovibrational stimulation: Nanokicking. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018;376(2120). doi:10.1098/rsta.2017.0290
29. Donnelly H, Ross E, Xiao Y, et al. Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells. Nat Commun. 2024;15(1). doi:10.1038/s41467-024-50054-0
30. Llopis-Hernández V, Cantini M, González-García C, et al. Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Sci Adv. 2016;2(8). doi:10.1126/sciadv.1600188
31. Sheikh FA, Ju HW, Moon BM, et al. Hybrid scaffolds based on PLGA and silk for bone tissue engineering. J Tissue Eng Regen Med. 2016;10(3):209-221. doi:10.1002/term.1989
32. Cheng ZA, Alba-Perez A, Gonzalez-Garcia C, et al. Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects. Advanced Science. 2019;6(2). doi:10.1002/advs.201800361
33. Han D, Wang W, Gong J, Ma Y, Li Y. Collagen-hydroxyapatite based scaffolds for bone trauma and regeneration: recent trends and future perspectives. Nanomedicine (Lond). 2024;19(18-20):1689-1709. doi:10.1080/17435889.2024.2375958
34. Bal Z, Kaito T, Korkusuz F, Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Knee Surg Sports Traumatol Arthrosc. 2018;106(6):363-382. doi:10.1007/s42247-019-00063-3/Published
35. Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 2006;11:43-56. doi:10.22203/eCM.v011a06
36. Yang J, McNamara LE, Gadegaard N, et al. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs. ACS Nano. 2014;8(10):9941-9953. doi:10.1021/nn504767g
37. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872-4877. doi:10.1073/pnas.0903269107
38. Cuahtecontzi Delint R, Jaffery H, Ishak MI, Nobbs AH, Su B, Dalby MJ. Mechanotransducive surfaces for enhanced cell osteogenesis, a review. Biomaterials Advances. 2024;160. doi:10.1016/j.bioadv.2024.213861
39. Jiao J, Hong Q, Zhang D, et al. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Front Bioeng Biotechnol. 2023;11. doi:10.3389/fbioe.2023.1117954
40. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices. 2020;5(1):1-9. doi:10.1016/j.jsamd.2020.01.007
41. Nikukar H, Reid S, Tsimbouri PM, Riehle MO, Curtis ASG, Dalby MJ. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano. 2013;7(3):2758-2767. doi:10.1021/nn400202j
42. Williams JA, Campsie P, Gibson R, et al. Developing and Investigating a Nanovibration Intervention for the Prevention/Reversal of Bone Loss Following Spinal Cord Injury. ACS Nano. 2024;18(27):17630-17641. doi:10.1021/acsnano.4c02104
43. Orapiriyakul W, Tsimbouri MP, Childs P, et al. Nanovibrational Stimulation of Mesenchymal Stem Cells Induces Therapeutic Reactive Oxygen Species and Inflammation for Three-Dimensional Bone Tissue Engineering. ACS Nano. 2020;14(8):10027-10044. doi:10.1021/acsnano.0c03130
44. Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Published online 2019. doi:10.7554/eLife.49631.001
45. Liu P, Tu J, Wang W, et al. Effects of Mechanical Stress Stimulation on Function and Expression Mechanism of Osteoblasts. Front Bioeng Biotechnol. 2022;10. doi:10.3389/fbioe.2022.830722
46. Sugimoto A, Miyazaki A, Kawarabayashi K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-18089-0
47. Zhou T, Gao B, Fan Y, et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. Elife. 2020;9. doi:10.7554/eLife.52779
48. Pemberton GD, Childs P, Reid S, et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: Nanotopography and nanokicking. Nanomedicine. 2015;10(4):547-560. doi:10.2217/nnm.14.134
49. Kennedy JW, Tsimbouri PM, Campsie P, et al. Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-02139-9
50. Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 2015;24(10):1150-1163. doi:10.1089/scd.2014.0484
51. Dalby MJ, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997-1003. doi:10.1038/nmat2013
52. Shobara K, Ogawa T, Shibamoto A, Miyashita M, Ito A, Sitalaksmi RM. Osteogenic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study. Clin Oral Implants Res. 2021;32(5):641-650. doi:10.1111/clr.13738
53. Berber R, Aziz S, Simkins J, Lin SS, Mangwani J. Low Intensity Pulsed Ultrasound Therapy (LIPUS): A review of evidence and potential applications in diabetics. J Clin Orthop Trauma. 2020;11:S500-S505. doi:10.1016/j.jcot.2020.03.009