Potassium channels in pancreatic cancer

Main Article Content

Mikio Hayashi Hiroko Matsuda


Pancreatic duct adenocarcinoma accounts for approximately 90% of pancreatic cancers and has a very poor prognosis.  Several K+ channels have been suggested as hallmarks for adenocarcinoma.  This review focuses on molecular candidates of functional K+ channels in pancreatic adenocarcinoma, including KCNN4 (KCa3.1), KCNJ3 (Kir3.1), KCNA3 (Kv1.3), KCNA5 (Kv1.5), KCNH1 (Kv10.1), and KCNK5 (K2P5.1).  We provide an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and tissue expression, in addition to their identification and functions in pancreatic adenocarcinomas.  We conclude by discussing some outstanding questions and future directions in pancreatic K+ channel research with respect to the treatment of pancreatic cancer.

Article Details

How to Cite
HAYASHI, Mikio; MATSUDA, Hiroko. Potassium channels in pancreatic cancer. Medical Research Archives, [S.l.], n. 4, aug. 2016. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/600>. Date accessed: 25 mar. 2023.
cancer; EAG1; GIRK1; pancreas; SK4; TASK-2
Review Articles


1. Andersen MN, Skibsbye L, Tang C, Petersen F, MacAulay N, Rasmussen HB, et al. PKC and AMPK regulation of Kv1.5 potassium channels. Channels (Austin) 2015; 9:121-8. doi:10.1080/19336950.2015.1036205

2. Arthur GK, Duffy SM, Roach KM, Hirst RA, Shikotra A, Gaillard EA, et al. KCa3.1 K+ channel expression and function in human bronchial epithelial cells. PLoS One 2015; 10:e0145259. doi:10.1371/journal.pone.0145259

3. Attali B, Romey G, Honoré E, Schmid-Alliana A, Mattéi MG, Lesage F, et al. Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. J Biol Chem 1992; 267:8650-7. PMID:1373731

4. Bachmann A, Gutcher I, Kopp K, Brendel J, Bosch RF, Busch AE, et al. Characterization of a novel Kv1.5 channel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2001; 364:472-8. doi:10.1007/s002100100474

5. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, et al. Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 2001; 98:13942-7. doi:10.1073/pnas.241497298

6. Bielanska J, Hernández-Losa J, Pérez-Verdaguer M, Moline T, Somoza R, Ramón YCS, et al. Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr Cancer Drug Targets 2009; 9:904-14. doi:10.2174/156800909790192400

7. Brevet M, Fucks D, Chatelain D, Regimbeau JM, Delcenserie R, Sevestre H, et al. Deregulation of 2 potassium channels in pancreas adenocarcinomas: implication of Kv1.3 gene promoter methylation. Pancreas 2009; 38:649-54. doi:10.1097/MPA.0b013e3181a56ebf

8. Brüggemann A, Pardo LA, Stühmer W, Pongs O. Ether-à-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature 1993; 365:445-8. doi:10.1038/365445a0

9. Castle NA, London DO, Creech C, Fajloun Z, Stocker JW, Sabatier JM. Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels. Mol Pharmacol 2003; 63:409-18. doi:10.1124/mol.63.2.409

10. Cazals Y, Bévengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun 2015; 6:8780. doi:10.1038/ncomms9780

11. Chandy KG, Cahalan M, Pennington M, Norton RS, Wulff H, Gutman GA. Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon 2001; 39:1269-76. doi:10.1016/S0041-0101(01)00120-9

12. Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, et al. Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci U S A 2002; 99:2350-5. doi:10.1073/pnas.042698399

13. Chung I, Schlichter LC. Native Kv1.3 channels are upregulated by protein kinase C. J Membr Biol 1997; 156:73-85. doi:10.1007/s002329900189

14. Cotten JF, Zou HL, Liu C, Au JD, Yost CS. Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2). Brain Res Mol Brain Res 2004; 128:112-20. doi:10.1016/j.molbrainres.2004.06.007

15. Fong P, Argent BE, Guggino WB, Gray MA. Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF. Am J Physiol Cell Physiol 2003; 285:C433-45. doi:10.1152/ajpcell.00509.2002

16. Franqueza L, Longobardo M, Vicente J, Delpón E, Tamkun MM, Tamargo J, et al. Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circ Res 1997; 81:1053-64. doi:10.1161/01.RES.81.6.1053

17. Franqueza L, Valenzuela C, Delpón E, Longobardo M, Caballero R, Tamargo J. Effects of propafenone and 5-hydroxy-propafenone on hKv1.5 channels. Br J Pharmacol 1998; 125:969-78. doi:10.1038/sj.bjc.0702129

18. García-Ferreiro RE, Kerschensteiner D, Major F, Monje F, Stühmer W, Pardo LA. Mechanism of block of hEag1 K+ channels by imipramine and astemizole. J Gen Physiol 2004; 124:301-17. doi:10.1085/jgp.200409041

19. Gerlach AC, Gangopadhyay NN, Devor DC. Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1. J Biol Chem 2000; 275:585-98. doi:10.1074/jbc.275.1.585

20. Gomez-Lagunas F, Carrillo E, Pardo LA, Stühmer W. Gating Modulation of the Tumor-Related Kv10.1 Channel by Mibefradil. J Cell Physiol 2016. doi:10.1002/jcp.25448.

21. Gómez-Varela D, Zwick-Wallasch E, Knötgen H, Sánchez A, Hettmann T, Ossipov D, et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 2007; 67:7343-9. doi:10.1158/0008-5472.CAN-07-0107

22. Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, et al. Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 2000; 92:1722-30. PMID:10839924

23. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, et al. Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci U S A 1990; 87:9411-5. PMID:2251283

24. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 1994; 45:1227-34. PMID:7517498

25. Han S, Yi H, Yin SJ, Chen ZY, Liu H, Cao ZJ, et al. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J Biol Chem 2008; 283:19058-65. doi:10.1074/jbc.M802054200

26. Hayashi M, Kunii C, Takahata T, Ishikawa T. ATP-dependent regulation of SK4/IK1-like currents in rat submandibular acinar cells: possible role of cAMP-dependent protein kinase. Am J Physiol Cell Physiol 2004; 286:C635-46. doi:10.1152/ajpcell.00283.2003

27. Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. doi:10.4161/chan.26100

28. Hayashi M, Wang J, Hede SE, Novak I. An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am J Physiol Cell Physiol 2012; 303:C151-9. doi:10.1152/ajpcell.00089.2012

29. Hede SE, Amstrup J, Klaerke DA, Novak I. P2Y2 and P2Y4 receptors regulate pancreatic Ca2+-activated K+ channels differently. Pflugers Arch 2005; 450:429-36. doi:10.1007/s00424-005-1433-3

30. Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knötgen H, Sánchez A, Rubio ME, et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 2006; 5:41. doi:10.1186/1476-4598-5-41

31. Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol 2014; 206:151-62. doi:10.1083/jcb.201404136

32. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 1997; 94:11651-6. PMID:9326665

33. Iwanir S, Reuveny E. Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels. Pflugers Arch 2008; 456:1097-108. doi:10.1007/s00424-008-0479-4

34. Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 2004; 65:630-8. doi:10.1124/mol.65.3.630

35. Jensen BS, Strøbæk D, Christophersen P, Jørgensen TD, Hansen C, Silahtaroglu A, et al. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 1998; 275:C848-56. PMID:9730970

36. Jeong I, Choi BH, Yoon SH, Hahn SJ. Carvedilol blocks the cloned cardiac Kv1.5 channels in a β-adrenergic receptor-independent manner. Biochem Pharmacol 2012; 83:497-505. doi:10.1016/j.bcp.2011.11.019

37. Jin W, Lu Z. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 1998; 37:13291-9. doi:10.1021/bi981178p

38. Jin W, Lu Z. Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 1999; 38:14286-93. doi:10.1021/bi991205r

39. Joiner WJ, Wang LY, Tang MD, Kaczmarek LK. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci U S A 1997; 94:11013-8. PMID:9380751

40. Khanna R, Roy L, Zhu X, Schlichter LC. K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol 2001; 280:C796-806. PMID:11245596

41. Kindler CH, Paul M, Zou H, Liu C, Winegar BD, Gray AT, et al. Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5). J Pharmacol Exp Ther 2003; 306:84-92. doi:10.1124/jpet.103.049809

42. Kobayashi T, Ikeda K, Kumanishi T. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K+ (GIRK) channels expressed in Xenopus oocytes. Br J Pharmacol 2000; 129:1716-22. doi:10.1038/sj.bjp.0703224

43. Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br J Pharmacol 2003; 138:1119-28. doi:10.1038/sj.bjp.0705172

44. Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 2004; 29:1841-51. doi:10.1038/sj.npp.1300484

45. Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants. PLoS One 2011; 6:e28208. doi:10.1371/journal.pone.0028208

46. Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 1995; 374:135-41. doi:10.1038/374135a0

47. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 1993; 364:802-6. doi:10.1038/364802a0

48. Kuras Z, Kucher V, Gordon SM, Neumeier L, Chimote AA, Filipovich AH, et al. Modulation of Kv1.3 channels by protein kinase A I in T lymphocytes is mediated by the disc large 1-tyrosine kinase Lck complex. Am J Physiol Cell Physiol 2012; 302:C1504-12. doi:10.1152/ajpcell.00263.2011

49. La JH, Kang D, Park JY, Hong SG, Han J. A novel acid-sensitive K+ channel in rat dorsal root ganglia neurons. Neurosci Lett 2006; 406:244-9. doi:10.1016/j.neulet.2006.07.039

50. Liao YJ, Jan YN, Jan LY. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci 1996; 16:7137-50. PMID:8929423

51. Liu Y, Xu XH, Liu Z, Du XL, Chen KH, Xin X, et al. Effects of the natural flavone trimethylapigenin on cardiac potassium currents. Biochem Pharmacol 2012; 84:498-506. doi:10.1016/j.bcp.2012.05.002

52. Ludwig J, Terlau H, Wunder F, Brüggemann A, Pardo LA, Marquardt A, et al. Functional expression of a rat homologue of the voltage gated ether á go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. EMBO J 1994; 13:4451-8. PMID:7925287

53. Malayev AA, Nelson DJ, Philipson LH. Mechanism of clofilium block of the human Kv1.5 delayed rectifier potassium channel. Mol Pharmacol 1995; 47:198-205. PMID:7838129

54. Matsubara H, Liman ER, Hess P, Koren G. Pretranslational mechanisms determine the type of potassium channels expressed in the rat skeletal and cardiac muscles. J Biol Chem 1991; 266:13324-8. PMID:1712780

55. Morishige K, Inanobe A, Yoshimoto Y, Kurachi H, Murata Y, Tokunaga Y, et al. Secretagogue-induced exocytosis recruits G protein-gated K+ channels to plasma membrane in endocrine cells. J Biol Chem 1999; 274:7969-74. doi:10.1074/jbc.274.12.7969

56. Morton MJ, Abohamed A, Sivaprasadarao A, Hunter M. pH sensing in the two-pore domain K+ channel, TASK2. Proc Natl Acad Sci U S A 2005; 102:16102-6. doi:10.1073/pnas.0506870102

57. Niemeyer MI, Cid LP, Barros LF, Sepúlveda FV. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 2001; 276:43166-74. doi:10.1074/jbc.M107192200

58. Occhiodoro T, Bernheim L, Liu JH, Bijlenga P, Sinnreich M, Bader CR, et al. Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion. FEBS Lett 1998; 434:177-82. doi:10.1016/S0014-5793(98)00973-9

59. Passadouro M, Faneca H. Managing pancreatic adenocarcinoma: a special focus in microRNA gene therapy. Int J Mol Sci 2016; 17:718. doi:10.3390/ijms17050718

60. Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation in epithelial physiology and cancer. Front Physiol 2013; 4:233. doi:10.3389/fphys.2013.00233

61. Pellegrino M, Pellegrini M. Modulation of Ca2+-activated K+ channels of human erythrocytes by endogenous cAMP-dependent protein kinase. Pflugers Arch 1998; 436:749-56. PMID:9716709

62. Philipson LH, Hice RE, Schaefer K, LaMendola J, Bell GI, Nelson DJ, et al. Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc Natl Acad Sci U S A 1991; 88:53-7. PMID:1986382

63. Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med 2010; 16:107-21. doi:10.1016/j.molmed.2010.01.005

64. Reuveny E, Slesinger PA, Inglese J, Morales JM, Iñiguez-Lluhi JA, Lefkowitz RJ, et al. Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature 1994; 370:143-6. doi:10.1038/370143a0

65. Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, et al. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 1998; 273:30863-9. doi:10.1074/jbc.273.47.30863

66. Schönherr R, Gessner G, Löber K, Heinemann SH. Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett 2002; 514:204-8. doi:10.1016/S0014-5793(02)02365-7

67. Schönherr R, Löber K, Heinemann SH. Inhibition of human ether à go-go potassium channels by Ca2+/calmodulin. EMBO J 2000; 19:3263-71. doi:10.1093/emboj/19.13.3263

68. Singh S, Syme CA, Singh AK, Devor DC, Bridges RJ. Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2001; 296:600-11. PMID:11160649

69. Snyders DJ, Knoth KM, Roberds SL, Tamkun MM. Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol 1992; 41:322-30. PMID:1538710

70. Snyders DJ, Tamkun MM, Bennett PB. A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 1993; 101:513-43. PMID:8505626

71. Stansfeld CE, Röper J, Ludwig J, Weseloh RM, Marsh SJ, Brown DA, et al. Elevation of intracellular calcium by muscarinic receptor activation induces a block of voltage-activated rat ether-à-go-go channels in a stably transfected cell line. Proc Natl Acad Sci U S A 1996; 93:9910-4. PMID:8790430

72. Steward MC, Ishiguro H, Case RM. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 2005; 67:377-409. doi:10.1146/annurev.physiol.67.031103.153247

73. Strutz-Seebohm N, Gutcher I, Decher N, Steinmeyer K, Lang F, Seebohm G. Comparison of potent Kv1.5 potassium channel inhibitors reveals the molecular basis for blocking kinetics and binding mode. Cell Physiol Biochem 2007; 20:791-800. doi:10.1159/000110439

74. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 1989; 8:3235-44. PMID:2555158

75. Swanson R, Marshall J, Smith JS, Williams JB, Boyle MB, Folander K, et al. Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron 1990; 4:929-39. doi:10.1016/0896-6273(90)90146-7

76. von Hahn T, Thiele I, Zingaro L, Hamm K, Garcia-Alzamora M, Köttgen M, et al. Characterisation of the rat SK4/IK1 K+ channel. Cell Physiol Biochem 2001; 11:219-30. doi:10.1159/000051936

77. Wang J, Haanes KA, Novak I. Purinergic regulation of CFTR and Ca2+-activated Cl− channels and K+ channels in human pancreatic duct epithelium. Am J Physiol Cell Physiol 2013; 304:C673-84. doi:10.1152/ajpcell.00196.2012

78. Wang S, Benamer N, Zanella S, Kumar NN, Shi Y, Bévengut M, et al. TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. J Neurosci 2013; 33:16033-44. doi:10.1523/JNEUROSCI.2451-13.2013

79. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 1994; 91:3438-42. PMID:8159766

80. Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, et al. Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 2004; 101:8215-20. doi:10.1073/pnas.0400081101

81. Wulf A, Schwab A. Regulation of a calcium-sensitive K+ channel (cIK1) by protein kinase C. J Membr Biol 2002; 187:71-9. doi:10.1007/s00232-001-0149-3

82. Wulff H, Miller MJ, Hänsel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 2000; 97:8151-6. doi:10.1073/pnas.97.14.8151

83. Ye F, Hu Y, Yu W, Xie Z, Hu J, Cao Z, et al. The scorpion toxin analogue BmKTX-D33H as a potential Kv1.3 channel-selective immunomodulator for autoimmune diseases. Toxins (Basel) 2016; 8:115 doi:10.3390/toxins8040115