Influence of vagus nerve and spleen ablation on brown adipose tissue histology of hypothalamic obese and non-obese male Wistar rats
Main Article Content
Abstract
Vagus nerve and spleen can influence metabolic function and adiposity. Brown adipose tissue is an organ specialized in thermogenesis, a biochemistry process of lipids degradation that results in heat production, elevating energy expenditure and contributing to anti-obesity effects.
Aim: Here, we evaluated the impact of vagus nerve and spleen absence on histology and lipid deposition of brown adipose tissue from non-obese and hypothalamic obese male Wistar rats.
Methods: Hypothalamic obesity was induced by neonatal glutamate L-monosodium (4g/Kg) administration during the first post-natal days. Control rats received equimolar saline. At 60 days of life, obese and control groups underwent surgery: vagotomy, splenectomy, and sham. At 150 days of life, the animals were weighed and measured. Blood was collected for biochemistry analysis of glucose and triglycerides, and insulin resistance evaluated. Moreover, white adipose tissue and brown adipose tissue depots were removed and weighed. Brown adipose tissue was histologically analyzed.
Results: In obese animals, elevated adiposity, hypertriglyceridemia, insulin resistance and higher lipid deposition in brown adipose tissue were noted. Vagus nerve ablation displayed more pronounced anti-adiposity effects, improving triglyceride plasma levels and insulin resistance in the obese rats compared to the control group. Moreover, spleen absence, especially in the obese group, raises nuclei number and reduced adipocyte size. These responses were amplified by vagus nerve ablation.
Conclusion: Hypothalamic obese rats show excessive adiposity and metabolic dysfunctions related to brown adipose tissue hypofunction. Vagus nerve and spleen absence reduced lipid deposition on brown adipose tissue of obese rats, suggesting reactivation of thermogenesis.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Corrêa, Heyn, Magalhaes. The Impact of the Adipose Organ Plasticity on Inflammation and Cancer Progression. Cells. 2019;8(7):662. doi:10.3390/cell s8070662
3. Fonseca-Alaniz MH, Takada J, Alonso-Vale MIC, Lima FB. The adipose tissue as a regulatory center of the metabolism. Arq Bras Endocrinol Metabol. 2006;50(2):216-229. doi:10.1590/s0004-27302006 000200008
4. Mariath AB, Grillo LP, Silva RO da, et al. Obesity and risk factors for the development of chronic non-transmissible diseases among consumers in a foodservice unit. Cad Saude Publica. 2007;23 (4):897-905. doi:10.1590/s0102-311x2007000400017
5. Worku MG, Seretew WS, Angaw DA, Tesema GA. Prevalence and Associated Factor of Brown Adipose Tissue: Systematic Review and Meta-Analysis. BioMed Res Int. 2020;2020:9106976. doi:10.115 5/2020/9106976
6. Boschini RP, Garcia Júnior JR. Regulação da expressão gênica das UCP2 e UCP3 pela restrição energética, jejum e exercício físico. Rev Nutr. 2005;18(6):753-764. doi:10.1590/S1415-52732005 000600006
7. Francine Naiara Broetto, Maria do Nascimento Brito. Tecido adiposo marrom e obesidade em humanos. Rev Saúde E Pesqui. 2012;5(1):121-135.
8. Porter C. Quantification of UCP1 function in human brown adipose tissue. Adipocyte. 2017;6 (2):167-174. doi:10.1080/21623945.2017.1319535
9. Adilson Domingos dos Reis Filho, Roberto Carlos Vieira Junior, Fabrício Azevedo Voltarelli. Exercicio fisico, proteina desacopladora-3 e termogenese. Rev Bras Prescrição E Fisiol Exerc. 2013;7(38):176-183.
10. Depieri TZ, Pinto RR, Catarin JK, de Carli MCL, Garcia Júnior JR. UCP-3: regulation of genic expression on skeletal muscle and possible role on body weight control. Arq Bras Endocrinol Metabol. 2004;48(3):337-344. doi:10.1590/s0004-27302004 000300003
11. Vijgen GHEJ, Bouvy ND, Leenen L, et al. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PloS One. 2013;8(10):e77221. doi:10.1371/journal.pone.0077221
12. Liu C, Bookout AL, Lee S, Sun K, Jia L, Lee C, Udit S, Deng Y, Scherer PE, Mangelsdorf DJ, Gautron L, Elmquist JK. PPARγ in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metab. 2014 Apr 1;19(4):722-30. doi: 10.1016/j.cmet.201 4.01.021. PMID: 24703703; PMCID: PMC4046333.
13. Lee HC, Curry DL, Stern JS. Direct effect of CNS on insulin hypersecretion in obese Zucker rats: involvement of vagus nerve. Am J Physiol. 1989 Mar;256(3 Pt 1):E439-44. doi: 10.1152/ajpendo.19 89.256.3.E439. PMID: 2646948.
14. Balbo SL, Grassiolli S, Ribeiro RA, Bonfleur ML, Gravena C, Brito Mdo N, Andreazzi AE, Mathias PC, Torrezan R. Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine. 2007 Apr;31(2):142-8. doi: 10.1007/s12020-007-0021-z. PMID: 17873325.
15. Barella LF, Miranda RA, Franco CC, Alves VS, Malta A, Ribeiro TA, Gravena C, Mathias PC, de Oliveira JC. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats. Exp Physiol. 2015 Jan;100(1):57-68. doi: 10.1113/e xpphysiol.2014.082982. Epub 2014 Dec 18. PMID: 25398717.
16. Catinis AM, Hinojosa AJ, Leonardi C, Cook MW. Hepatic Vagotomy in Patients With Obesity Leads to Improvement of the Cholesterol to High-Density Lipoprotein Ratio. Obes Surg. 2023 Dec; 33(12):3740-3745. doi: 10.1007/s11695-023-0680 0-2. Epub 2023 Nov 4. PMID: 37924466.
17. Lubaczeuski C, Balbo SL, Ribeiro RA, et al (2015) Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats. Brazilian Journal of Medical and Biological
Research 48:447–457. https://doi.org/10.1590/1414-431X20144340
18. Székely M. The vagus nerve in thermoregulation and energy metabolism. Auton Neurosci Basic Clin. 2000;85(1-3):26-38. doi:10.1016/S1566-0702(00)00217-4
19. Hibi M, Oishi S, Matsushita M, et al. Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. Int J Obes 2005. 2016;40(11): 1655-1661. doi:10.1038/ijo.2016.124
20. Yamazaki T, Morimoto-Kobayashi Y, Koizumi K, Takahashi C, Nakajima S, Kitao S, et al.. Secretion of a gastrointestinal hormone, cholecystokinin, by hop-derived bitter components activates sympathetic nerves in brown adipose tissue. J Nutr Biochem. (2019) 64:80–7. 10.1016/j.j nutbio.2018.10.009
21. Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol. 2020;11:222. doi:10.3389/fendo.2020.00222
22. Mano-Otagiri A, Iwasaki-Sekino A, Nemoto T, et al. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul Pept. 2010;160(1-3):81-90. doi:10.1016/j.regpep.2009.11.010
23. Matteoli G, Gomez-Pinilla PJ, Nemethova A, et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut. 2014;63(6):938-948. doi:10.1136/gutjnl-2013-304676
24. Tarantino G, Scalera A, Finelli C. Liver-spleen axis: intersection between immunity, infections and metabolism. World J Gastroenterol. 2013;19(23): 3534-3542. doi:10.3748/wjg.v19.i23.3534
25. Knoll M, Winther S, Natarajan A, et al. SYK kinase mediates brown fat differentiation and activation. Nat Commun. 2017;8(1):2115. doi:10.1038/s41467-017-02162-3
26. Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164(3880):719-721. doi:10.1126/science.164.3880.719
27. Gotoh K, Inoue M, Shiraishi K, et al. Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas disease. PloS One. 2012;7(12):e53154.
doi:10.1371/journal.pone.0053154
28. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F (2008) The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord 6:299–304. https://doi.org/10.1089/met.2008.0034
29. Bernardis LL, Patterson BD (1968) Correlation Between “Lee Index” And Carcass Fat Content In Weanling And Adult Female Rats With Hypothalamic Lesions. Journal of Endocrinology 40:527–528. https://doi.org/10.1677/joe.0.0400527
30. Konrad S, Farah V, Rodrigues B, et al. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents. Clinics. 2012;67(10):1209-1214. doi:10.6061/clinic s/2012(10)14
31. Voltera AF, Cesaretti MLR, Ginoza M, Kohlmann O. Effects of neuroendocrine obesity induction on systemic hemodynamics and left ventricular function of normotensive rats. Arq Bras Endocrinol Metabol. 2008;52(1):47-54. doi:10.1590/s0004-27302008000100008
32. Corder R, Saudan P, Mazlan M, McLean C, Gaillard RC. Depletion of Hypothalamic Growth Hormone-Releasing Hormone by Neonatal Monosodium Glutamate Treatment Reveals an Inhibitory Effect of Betamethasone on Growth Hormone Secretion in Adult Rats. Neuroendocrinology. 1990;51(1):85-92. doi:10.1159/000125321
33. Nishimoto Y, Tamori Y. CIDE Family-Mediated Unique Lipid Droplet Morphology in White Adipose Tissue and Brown Adipose Tissue Determines the Adipocyte Energy Metabolism. J Atheroscler Thromb. 2017;24(10):989-998. doi:10.5551/jat.RV17011
34. Virtue S, Vidal-Puig A (2013) Assessment of brown adipose tissue function. Front Physiol 4:. https://doi.org/10.3389/fphys.2013.00128
35. Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med. 2020;7:22.
doi:10.3389/fcvm.2020.00022
36. Brondani L de A, Assmann TS, Duarte GCK, Gross JL, Canani LH, Crispim D. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2012;56(4):215-225. doi:10.1590/S0004-27302012000400001
37. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. Brown adipose tissue in morbidly obese subjects. PLoS One. 2011 Feb 24;6(2):e17247. doi: 10.1371/journal.pon e.0017247. PMID: 21390318; PMCID: PMC3044745.
38. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol. 2018;9:447. doi:10.3389/fendo.2018.0 0447
39. Martín FM, Alzamendi A, Harnichar AE, et al (2023) Role of glucocorticoid receptor (GR) in white adipose tissue beiging. Life Sci 322:121681. https://doi.org/10.1016/j.lfs.2023.121681
40. Cypess AM, Kahn CR. The Role and Importance of Brown Adipose Tissue in Energy Homeostasis. Curr Opin Pediatr. 2010;22(4):478-484. doi:10.1097/MOP.0b013e32833a8d6e
41. Yoshioka K, Yoshida T, Kondo M. Reduced brown adipose tissue thermogenesis and metabolic rate in pre-obese mice treated with monosodium-L-glutamate. Endocrinol Jpn. 1991;38(1):75-79. doi:10.1507/endocrj1954.38.75
42. Yoshioka K, Yoshida T, Kondo M. Effect of acute cold-exposure on norepinephrine turnover and thermogenesis in brown adipose tissue and metabolic rate in MSG-induced obese mice. Jpn J Physiol. 1989;39(6):957-962. doi:10.2170/jjphysiol.39.957
43. Scomparin DX, Gomes RM, Grassiolli S, Rinaldi W, Martins AG, de Oliveira JC, Gravena C, de Freitas Mathias PC. Autonomic activity and glycemic homeostasis are maintained by precocious and low intensity training exercises in MSG-programmed obese mice. Endocrine. 2009 Dec;36 (3):510-7. doi: 10.1007/s12020-009-9263-2. Epub 2009 Oct 24. PMID: 19856134.
44. Maliszewska K, Kretowski A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int J Mol Sci. 2021;22(4):1530. doi:10.3390/ijms2 2041530
45. Trevizan-Baú, P. and McAllen, R.M. (2024), What is the Vagal–Adrenal Axis?. J Comp Neurol, 532: e25656. https://doi.org/10.1002/cne.25656
46. Kawai T, Autieri M V., Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. American Journal of Physiology-Cell Physiology 320:C375–C391. https://doi.org/10.1152/ajpcell.00379.2020
47. Buchan L, St. Aubin CR, Fisher AL, et al (2018) High-fat, high-sugar diet induces splenomegaly that is ameliorated with exercise and genistein treatment. BMC Res Notes 11:752. https://doi.org/10.1186/s13104-018-3862-z
48. Tarantino G, Citro V, Conforti P, et al (2019) Is There a Link between Basal Metabolic Rate, Spleen Volume and Hepatic Growth Factor Levels in Patients with Obesity-Related NAFLD? J Clin Med 8:1510. https://doi.org/10.3390/jcm8101510
49. de Souza TA, de Souza DW, Siqueira BS, et al (2020) Splenic participation in glycemic homeostasis in obese and non-obese male rats. Obes Res Clin Pract 14:479–486. https://doi.org/10.1016/j.orcp.2020.07.009
50. Leite N de C, Montes EG, Fisher SV, et al (2015) Splenectomy attenuates obesity and decreases insulin hypersecretion in hypothalamic obese rats. Metabolism 64:1122–1133. https://doi.org/10.1016/j.metabol.2015.05.003
51. Ai XM, Ho LC, Han LL, Lu JJ, Yue X, Yang NY. The role of splenectomy in lipid metabolism and atherosclerosis (AS). Lipids Health Dis. 2018 Aug 16;17(1):186. doi: 10.1186/s12944-018-0841-2. PMID: 30111317; PMCID: PMC6094557.
52. Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev. 2024 Oct 1;104 (4):1461-1486. doi: 10.1152/physrev.00038.2023. Epub 2024 Apr 25. PMID: 38661565.
53. Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes. 2010;34(S1):S36-S42. doi:10.1038/ijo.2010.182
54. Madden CJ, Santos da Conceicao EP, Morrison SF. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis. Temp Austin Tex. 2017; 4(1):89-96. doi:10.1080/23328940.2016.1257407
55. Anandhakrishnan A, Korbonits M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes. 2016;7(20):572-598. doi:10.4239/wjd.v7.i20.572
56. Bonaz B, Sinniger V, Pellissier S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb Perspect Med. 2019 Aug 1;9(8): a034199. doi: 10.1101/cshperspect.a034199. PMID: 30201788; PMCID: PMC6671930.
57. Wei Y, Wang T, Liao L, et al (2022) Brain-spleen axis in health and diseases: A review and future perspective. Brain Res Bull 182:130–140. https://doi.org/10.1016/j.brainresbull.2022.02.008
58. Guareschi Z, Ceglarek V, Rodrigues P, Huning L, Festinalli C, Amorim, JP, Grassiolli S. (2019). Exercise and Vitamin D Supplementation Modify Spleen Morphology in Lean, but not, in Monosodium-Glutamate-Obese Rats. Journal of Spleen and Liver Research. 1. 1-14. 10.14302/issn.2578-2371.jslr-19-2819
59. Raiko J, Holstila M, Virtanen KA, et al (2015) Brown adipose tissue triglyceride content is associated with decreased insulin sensitivity, independently of age and obesity. Diabetes Obes Metab 17:516–519.
https://doi.org/10.1111/dom.12433
60. Laskiewicz J, Krolczyk G, Zurowski G, Sobocki J, Matyja A, et al. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol. 2003;54:603-610.
61. de Souza DW, Ceglarek VM, Siqueira BS, Volinski CZ, Nenevê JZ, Arruda JPA, Vettorazzi JF, Grassiolli S. Phenylhydrazine-induced anaemia reduces subcutaneous white and brown adipose tissues in hypothalamic obese rats. Exp Physiol. 2022;107(6):575-588. doi:10.1113/EP089883.
62. Wang J, Wu Q, Zhou Y, Yu L, Yu L, Deng Y, Tu C, Li W. The mechanisms underlying olanzapine-induced insulin resistance via the brown adipose tissue and the therapy in rats. Adipocyte. 2022; 11(1):84-98. doi:10.1080/21623945.2022.2026590