The role of troponin testing in the diagnosis of acute coronary syndrome: when and how?

Main Article Content

Arnoud van der Laarse, PhD Christa M. Cobbaert, PhD

Abstract

Background and aim: The large number of publications on the role of troponin testing in the setting of patients with suspected acute coronary syndrome, in patients with stable angina, in patients with comorbidities, and in elderly residents makes it difficult to determine what to do (which troponin test), in what patients (acute or chronic coronary disease), and in which setting (testing in the ambulance, emergency department or Intensive Care Unit). The development of point-of-care troponin I and T tests has opened the door for early testing, but testing too early will conflict with the “troponin blind interval”. The recent improvements of analytical sensitivity of point-of-care troponin tests have created a vast number of new situations in which an early generated troponin result may lead to rapid diagnosis (in conjunction with ECG, anginal complaints, and physical examination) and rapid “rule in” or “rule out” decisions, which will lead to less admissions to the emergency department, less diagnostic activities like imaging procedures, and less costs of clinical care.


Methods: This review addresses developments of this field in the past 10 years since we asked the question “Will future troponin measurement overrule the ECG as the primary diagnostic tool in patients with acute coronary syndrome?”1 


Findings: The sensitivity and reliability of the cardiac troponin I or T tests, including point-of-care cardiac troponin I or T tests, have been improved to a level that is indicated by the indication “high-sensitivity” (hs). These tests make it possible to determine cardiac troponin I or T values (i) in ≥50% of blood samples of healthy individuals, (ii) in blood samples of patients with acute myocardial infarction of very recent origin, (iii) in blood samples that show a rise of cardiac troponin I or T levels, and (iiii) in blood samples that show a fall of cardiac troponin I or T levels. An interesting development is the use of a second biomarker, of which copeptin is a promising adjunct. Instead of a second biomarker, clinicians are assisted by employing acute coronary syndrome scoring systems (such as the HEART score), for instance, to identify patients with low risk. The issue of specificity of elevated cardiac troponin I or T levels for acute myocardial infarction is scrutinized.  


Conclusion: We conclude this review by stating that for patients with suspected acute coronary syndrome the protocols are refined for how and when to use cardiac troponin I or T tests for (i) prehospital triage to rule out low risk patients, and (ii) in hospital risk assessment of (very) high risk patients, including anamnesis, physical examination, and ECG. The continuing development of cardiac troponin tests improves the quality of diagnosis and shortens the interval to diagnosis and subsequent discharge from hospital, leading to less further clinical assessments, and less health care costs. In general, any new biomarker test should comply with filling in existing gaps in clinical care.

Keywords: hs-cardiac troponin, non-hs-cardiac troponin, acute coronary syndrome, acute myocardial infarction, point-of-care test

Article Details

How to Cite
LAARSE, Arnoud van der; COBBAERT, Christa M.. The role of troponin testing in the diagnosis of acute coronary syndrome: when and how?. Medical Research Archives, [S.l.], v. 12, n. 11, nov. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6033>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v12i11.6033.
Section
Research Articles

References

1. van der Laarse A, Cobbaert CM, Gorgels APM, Swenne CA. Will future troponin measurements overrule the ECG as the primary diagnostic tool in patients with acute coronary syndrome? J Electrocardiol 2013;46(4):312-317. http://dx.doi.org./10.1016/j.jelectrocard.2013.02.007

2. Haller PM, Kellner C, Sörensen NA, et al. Long term outcome of patients presenting with myocardial injury or myocardial infarction. Clin Res Cardiol 2023; online ahead of print. https://doi.org/10.1007/s00392-023-02334-w

3. Lee KK, Ferry AV, Anand AA, et al. Sex-specific thresholds of high-sensitivity troponin in patients with suspected acute coronary syndrome. J Am Coll Cardiol 2019;74(16):2032-2043.
https://doi.org/10.1016/j.jacc.2019.07.082

4. O’Donohoe TJ, Ketheesan N, Schrale RG. Review. Anti-troponin antibodies following myocardial infarction. J Cardiol 2017;69(1):38-45. http://dx.doi.org/10.1016/j.jjcc.2016.07.018

5. Panteghini M. How clinical laboratories may improve their performance: the “high-sensitivity” troponin paradigm. Clin Chem 2018;64(4):621-623. https://dx.doi.org/10.1373/clinchem.2017.285577

6. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation 2018;138(20):e618-e651. http://doi.org/10.1161/CIR.0000000000000617

7. Garcia-Garcia HM, McFadden EP, Farb A, et al. Standardized end point definitions for coronary intervention trials: the Academic Research Consortium-2 Consensus Document. Circulation 2018;137(24):2635–50.
https://doi.org/10.1161/CIRCULATIONAHA.117.029289

8. Moussa ID, Klein LW, Shah B, et al. Consideration of a New Definition of Clinically Relevant Myocardial Infarction After Coronary Revascularization: An Expert Consensus Document From the Society for Cardiovascular Angiography and Interventions (SCAI). J Am Coll Cardiol 2013; 62(17):1563–1570.
https://doi.org/10.1016/j.jacc.2013.08.720

9. Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2012;33(20):2569-2619.
https://doi.org/10.1093/eurheartj/ehs215

10. Roffi M, Patrono C, Collet J-P, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2016;37(3):267-315.
https://doi.org/10.1093/eurheartj/ehv320

11. Kozinski M, Krintus M, Kubica J, Sypniewska G. High-sensitivity cardiac troponin assays: from improved analytical performance to enhanced risk stratification. Crit Rev in Clin Lab Sci 2017;54(3):1 43-172.
https://doi.org/10.1080/10408363.2017.1285268

12. Apple FS, Jaffe AS, Collinson P, et al. IFCC educational materials on selected analytical and clinical applications of high sensitivity cardiac troponin assays. Clin Biochem 2015;48(4-5):201-203.
https://doi.org/10.1016/j.clinbiochem.2014.08.021

13. Wu AHB, Christenson RH, Greene DN, et al. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: Expert Opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2018;64(4):645-655.
https://doi.org/10.1373/clinchem.2017.277186

14. Pickering JW, Young JM, George PM, et al. Validity of a novel point-of-care troponin assay for single-test rule-out of acute myocardial infarction. JAMA Cardiol 2018;3(11):1108-1112.
https://doi.org/10.1001/jamacardio.2018.3368

15. Biomarkers Reference Tables - IFCC (Assessed September 30, 2024)

16. Sörensen NA, Neumann JT, Ojeda F, et al. Diagnostic evaluation of a high-sensitivity troponin I point-of-care assay. Clin Chem 2019;65(12):1592-1601. https://doi.org/10.1373/clinchem.2019.307405

17. ter Avest E, Visser A, Reitsma B, Breedveld R, Wolthuis A. Point-of-care troponin T is inferior to high-sensitivity troponin T for ruling out acute myocardial infarction in the emergency department. Eur J Emerg Med 2016;23(2):95-101. https://doi.org/10.1097/MEJ.0000000000000225

18. Di Somma S, Zampini G, Vetrone F, et al. Opinion paper on utility of point-of-care biomarkers in the emergency department pathways decision making. Clin Chem Lab Med 2014;52(10):1401-1407.
https://doi.org/10.1515/cclm-2014-0267

19. Camaro C, Aarts GWA, Adang EMM, et al. Rule-out of non-ST-segment elevation acute coronary syndrome by a single, pre-hospital troponin measurement: a randomized trial. Eur Heart J 2023;44(19):1705-1714.
https://doi.org/10.1093/eurheartj/ehad056

20. Aarts GWA, Camaro C, Adang Emm, et al. Pre-hospital rule-out of non-ST-segment elevation acute coronary syndrome by a single troponin: final one-year outcomes of the ARTICA randomised trial. Eur Heart J – Qual Care Clin Outcomes 2024;10(5):411-420. https://doi.org/10.1093/ehjqcco/qcae004

21. Johannessen TR, Halvorsen S, Atar D, et al. Cost-effectiveness of a rule-out algorithm of acute myocardial infarction in low-risk patients: emergency primary care versus hospital setting. BMC Health Serv Res 2022;22(1):1274. https://doi.org/10.1186/s12913-022-08697-6

22. Tolsma RT, Fokkert MJ, van Dongen DN, et al. Referral decisions based on a pre-hospital HEART score in suspected non-ST-elevation acute coronary syndrome: final results of the FamouSTriage study. Eur Heart J - Acute Cardiovasc Care 2022;11(2):16 0–169. https://doi.org/10.1093/ehjacc/zuab109

23. Stopyra JP, Snavely AC, Smith LM, et al. Prehospital use of a modified HEART Pathway and point-of-care troponin to predict cardiovascular events. PLoS One 2020;15(10):e0239460.
https://doi.org/10.1371/journal.pone.0239460

24. Rasmussen MB, Stengaard C, Sørensen JT, et al. Predictive value of routine point-of-care cardiac troponin T measurement for prehospital diagnosis and risk-stratification in patients with suspected acute myocardial infarction. Eur Heart J - Acute Cardiovasc Care 2019;8(4):299–308. https://doi.org/10.1177/2048872617745893

25. Florkowski CM, Buchan V, Li BV, et al. Analytical verification of the Atellica VTLi point of care high sensitivity troponin I assay. Clin Chem Lab Med 2024; online ahead of print. https://doi.org/10.1515/cclm-2024-0312

26. Toprak B, Solleder H, Di Carlucco E, et al. Diagnostic accuracy of machine learning algorithm using point-of-care high-sensitivity cardiac troponin I for rapid rule-out of myocardial infarction: a retrospective study. Lancet Digital Health 2024;6 (10):e729-e738. https://doi.org/10.1016/S2589-7500(24)00191-2

27. Gandhi PU, Januzzi JL jr. Can copeptin emerge from the growing shadow of the troponins? Eur Heart J 2015;36(6):333-336. https://doi.org/10.1093/eurheartj/ehu211

28. Thygesen K, Mair J, Giannitsis E, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012;33(20):2251–2267. https://doi.org/10.1093/eurheartj/ehs154

29. Krintus M, Kozinski M, Fabiszak T, et al. Impact of lipid markers and high-sensitivity C-reactive protein on the value of the 99th percentile upper reference limit for high-sensitivity cardiac troponin. Clin Chim Acta 2016;462:193-200.
https://doi.org/10.1016/j.cca.2016.09.020

30. Lippi G, Lo Cascio C, Brocco B, et al. High-density lipoprotein cholesterol values independently and inversely predict cardiac troponin T and I concentration. Ann Transl Med 2016;4(10):188-194.
http://dx.doi.org/10.21037/atm.2016.03.03

31. Marjot J, Kaier TE, Martin ED, et al. Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and intact myocardium. Clin Chem 2017;63(5):990-996.
https://doi.org/10.1373/clinchem.2016.264648

32. Bjurman C, Larsson M, Johanson P, et al. Small changes in troponin T levels are common in patients with non-ST-segment elevation myocardial infarction and are linked to higher mortality. J Am Coll Cardiol 2013;62(14):1231-8. https://doi.org/10.1016/j.jacc.2013.06.050

33. Sandoval Y, Apple FS. The global need to define normality: the 99th percentile value of cardiac troponin. Clin Chem 2014;60(3):455–462. https://doi.org/10.1373/clinchem.2013.211706

34. Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J,et al. Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem 2017;63(1):73-81.
https://doi.org/10.1373/clinchem.2016.255109

35. Ungerer JPL, Tate JR, Pretorius CJ. Discordance with 3 cardiac troponin I and T assays: implications for the 99th percentile cut off. Clin Chem 2016;62(8):1106-1114. https://doi.org/10.1373/clinchem.2016.255281

36. Rubini Giménez M, Twerenbold R, Boeddinghaus J, et al. Clinical effect of sex-specific cutoff values of high-sensitivity cardiac troponinT in suspected myocardial infarction. JAMA Cardiol 2016;1(8):912-920.
https://doi.org/10.1001/jamacardio.2016.2882

37. Trambas C, Pickering JW, Than M, et al. Impact of high-sensitivity troponin I testing with sex-specific cutoffs on the diagnosis of acute myocardial infarction. Clin Chem 2016;62(6):831-838.
https://doi.org/10.1373/clinchem.2015.252569

38. Eggers KM, Johnston N, Lind L, Venge P, Lindahl B. Cardiac troponin I levels in an elderly population from the community -The implications of sex. Clin Biochem 2015;48(12):751-756.
https://doi.org/10.1016/j.clinbiochem.2015.04.013

39. Shah ASV, Griffiths M, Lee KK, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ 2015;350:g7873. https://doi.org/10.1136/bmj.g7873

40. Jaffe AS, Moeckel M, Giannitsis E, et al. In search for the Holy Grail: suggestions for studies to define delta changes to diagnose or exclude acute myocardial infarction: a position paper from the study group on biomarkers of the Acute Cardiovascular Care Association. Eur Heart J – Acute Card Care 2014;3(4):313–316.
https://doi.org/10.1177/2048872614541906

41. Goodman SG, Steg PG, Eagle KA, et al. The diagnostic and prognostic impact of the redefinition of acute myocardial infarction: lessons from the Global Registry of Acute Coronary Events (GRACE). Am Heart J 2006;151(3):654–660. https://doi.org/10.1016/j.ahj.2005.05.014

42. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 2010;56(2):254–261. https://doi.org/10.1373/clinchem.2009.132654

43. Badertscher P, Boeddinghaus J, Nestelberger T, et al. Effect of acute coronary syndrome probability on diagnostic and prognostic performance of high-sensitivity cardiac troponin. Clin Chem 2018;64(3):515-525.
http://doi.org/10.1373/clinchem.2017.279513

44. Jia X, Sun W, Hoogeveen RC, et al. High-sensitivity troponin I and incident coronary events, stroke, heart failure hospitalization, and mortality in the ARIC Study. Circulation 2019;139(23):2642-2653.
https://doi.org/10.1161/CIRCULATIONAHA.118.038772

45. Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J 2011;32(4):404-411. https://doi.org/10.1093/eurheartj/ehq456

46. Garg P, Morris P, Fazlanie AL. Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern Emerg Med 2017;12(2):147-155. https://doi.org/10.1007/s11739-017-1612-1

47. Suzuki K, Komukai K, Nakata K, et al. The usefulness and limitations of point-of-care cardiac troponin measurement in the emergency department. Intern Med 2018;57(12):1673-1680.
https://doi.org/10.2169/internalmedicine.0098-17

48. De Michieli L, Jaffe AS, Sandoval Y. Use and prognostic implications of cardiac troponin in COVID-19. Cardiol Clin 2022;40(3):287-300. https://doi.org/10.1016/j.ccl.022.03.005

49. Turer AT, Addo TA, Martin JL, et al. Myocardial ischemia induced by rapid atrial pacing causes troponin T release detectable by a high-sensitivity assay: Insights from a coronary sinus sampling study. J Am Coll Cardiol 2011;57(24):23 98–2405.
https://doi.org/10.1016/j.jacc.2010.11.066

50. Mousavi N, Czarnecki A, Kumar K, et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol 2009;103 (10):1467–1472. https://doi.org/10.1016/j.amjcard.2009.01.294

51. Boeckel JN, Palapies L, Klotsche J, et al. Adjusted troponin I for improved evaluation of patients with chest pain. Sci Rep 2018;8(1):8087. https://doi.org/10.1038/s41598-018-26120-1

52. Aengevaeren VL, Hopman MTE, Thompson PD, et al. Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation 2019;140(10):804-814.
https://doi.org/10.1161/CIRCULATIONAHA.119.041627

53. Kubo T, Kitaoka H, Yamanaka S, et al. Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J Am Coll Cardiol 2013;62(14):1252-1259. http://dx.doi.org/10.1016/j.jacc.2013.03.05

54. Humble CAS, Huang S, Jammer I, Björk J, Chew MS. Prognostic performance of preoperative cardiac troponin and perioperative changes in cardiac troponin for the prediction of major adverse cardiac events and mortality in noncardiac surgery: A systematic review and meta-analysis. PLos-ONE 2019;14(4):e0215094.
https://doi.org/10.1371/journal.pone.0215094

55. Zhu Y, Bi Y, Yu Q, Liu B. Assessment of the prognostic value of preoperative high-sensitive troponin T for myocardial injury and long-term mortality for groups at high risk for cardiovascular events following noncardiac surgery: a retrospective cohort study. Front Med 2023;10:1135786. https://doi.org/10.3389/fmed.2023.1135786

56. Adamson PD, Hunter A, Madsen DM, et al. High-sensitivity cardiac troponin I and the diagnosis of coronary artery disease in patients with suspected angina pectoris. Circulation – Cardiovasc Qual Outcomes 2018;11(2):e004227. https://doi.org/10.1161/CIRCOUTCOMES.117.004227

57. Wu AHB. Release of cardiac troponin from healthy and damaged myocardium. Frontiers Lab Med 2017;1(2):144-150. https://doi.org/10.1016/j.flm.2017.09.003

58. Lehmann LH, Heckmann MB, Bailly GB, et al. Cardio-muscular biomarkers in the diagnosis and prognostication of immune checkpoint inhibitor myocarditis: troponins as biomarkers in ICI-myocarditis. Circulation 2023;148(6):473-486. https://doi.org/10.1161/CIRCULATIONAHA.123.062405]

59. Jaffe AS, Vasile VC, Milone M, Saenger AK, Olson KN, Apple FS. Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 2011;58(17):1819-1824.
https://doi.org/10.1016/j.jacc.2011.08.026

60. Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated cardiac troponin T in patients with skeletal myopathies. J Am Coll Cardiol 2018;71(14) :1540-1549. https://doi.org/10.1016/j.jacc.2018.01.070

61. du Fay de Lavallaz J, Prepoudis A, Wendebourg MJ, et al. Skeletal muscle disorders: a noncardiac source of cardiac troponin T. Circulation 2022;145(24):1764-1779. https://doi.org/10.1161/CIRCULATIONAHA.121.058489

62. Korley FK, Jaffe AS. Preparing the United States for high-sensitivity cardiac troponin sssays. J Am Coll Cardiol 2013;61(17):1753-1758. https://doi.org/10.1016/j.jacc.2012.09.069

63. Sherwood MW, Newby K. High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc 2014;3(1):e000403. https://doi.org/10.1161/JAHA.113.000403

64. Lee KK, Noaman A, Vaswani A, et al. Prevalence, determinants, and clinical associations of high-sensitivity cardiac troponin in patients attending emergency departments. Am J Med 2019;132:110.e8-110.e21.
https://doi.org/10.1016/j.amjmed.2018.10.002

65. de Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010;304(22): 2503-2512.
https://doi.org/10.1001/jama.2010.1768

66. deFilippi CR, de Lemos JA, Christensen RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 2010;304(22):2494-2502. https://doi.org/10.1001/jama.2010.1708

67. Saunders JT, Nambi V, de Lemos JA, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the ARIC study. Circulation 2011; 123(13):1367-1376.
https://doi.org/10.1161/CIRCULATIONAHA.110.005264

68. Hamm CW, Giannitsis E, Katus HA. Cardiac troponin elevations in patients without acute coronary syndrome. Circulation 2002;106(23):2871 -2872. https://doi.org/10.1161/01.CIR.0000044342.50593.63

69. Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med 2005;142(9):786-791.
https://doi.org/10.7326/0003-4819-142-9-200505030-00015

70. Giannitsis E, Katus HA. Cardiac troponin level elevations not related to acute coronary syndromes. Nat Rev Cardiol 2013;10(11):623-634. https://doi.org/10.1038/nrcardio.2013.129

71. Jaffe AS. Editorial comment. Chasing troponin: how low can you go if you can see the rise? J Am Coll Cardiol 2006;48(9):1763-4. https://doi.org/10.1016/j.jacc.2006.08.006

72. deFilippi CR, Herzog CA. Interpreting cardiac biomarkers in the setting of chronic kidney disease. Clin Chem 2017;63(1):59-65. https://doi.org/10.1373/clinchem.2016.254748

73. Gallacher PJ, Miller-Hodges E, Shah ASV, et al. High-sensitivity cardiac troponin and the diagnosis of myocardial infarction in patients with kidney impairment. Kidney Int 2022;102(1):149–159.
https://doi.org/10.1016/j.kint.2022.02.019

74. Miller-Hodges E, Anand A, Shah ASV, et al. High-sensitivity cardiac troponin and the risk stratification of patients with renal impairment presenting with suspected acute coronary syndrome. Circulation 2018;137(5):425–435. https://doi.org/10.1161/CIRCULATIONAHA.117.030320

75. Limkakeng AT, Hertz J, Lerebours R, et al. Ideal high sensitivity troponin baseline cutoff for patients with renal dysfunction. Am J Emerg Med 2022;56:323-324. https://doi.org/10.1016/j.ajem.2020.06.07

76. Kraus D, von Jeinsen B, Tzikas S, et al. Cardiac troponins for the diagnosis of acute myocardial infarction in chronic kidney disease. J Am Heart Assoc 2018;7(19):e008032. https://doi.org/10.1161/JAHA.117.008032

77. Twerenbold R, Wildi K, Jaeger C, et al. Optimal cutoff levels of more sensitive cardiac troponin assays for the early diagnosis of myocardial infarction in patients with renal dysfunction. Circulation 2015;131(23):2041–2050.
https://doi.org/10.1161/CIRCULATIONAHA.114.014245

78. Knott JD, Ola O, De Michieli L, et al. Diagnosis of acute myocardial infarction in patients with renal failure using high-sensitivity cardiac troponin T. Eur Heart J – Acute Cardiovasc Care 2024;13(7):546-558.
https://doi.org/10.1093/ehjacc/zuae079

79. Martens RJ, Kimenai DM, Kooman JP, et al. Estimated glomerular filtration rate and albuminuria are associated with biomarkers of cardiac injury in a population-based cohort study: the Maastricht study. Clin Chem 2017;63(4):887–97. http://doi.org/10.1373/clinchem.2016.266031

80. Aimo A, Januzzi JL Jr, Vergaro G, et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: A multimarker strategy for risk stratification in chronic heart failure. Int J Cardiol 2019;277:166-172.
https://doi.org/10.1016/j.ijcard.2018.10.079

81. Chaitman BR. Is the 99th percentile the optimal reference limit to diagnose myocardial infarction with high-sensitivity cardiac troponin assays in patients with chronic kidney disease? Circulation 2015;131(24):2029-2031.
http://doi.org/10.1161/CIRCULATIONAHA.115.016848

82. Buiten MS, de Bie MK, Rotmans JI, et al. Serum cardiac troponin-I is superior to troponin-T as a marker for left ventricular dysfunction in clinically stable patients with end-stage renal disease. PLoS ONE 2015;10(8):e0134245. https://doi.org/10.1371/journal.pone.0134245

83. Chenevier-Gobeaux C, Meune C, Freund Y, et al. Influence of age and renal function on high-sensitivity cardiac troponin T diagnostic accuracy for the diagnosis of acute myocardial infarction. Am J Cardiol 2013;111(12):1701-1707. https://doi.org/10.1016/j.amjcard.2013.02.024

84. Lee KK, Bularga A, O’Brien R, et al. Troponin-guided coronary computed tomographic angiography after exclusion of myocardial infarction. J Am Coll Cardiol 2021;78(14):1407-1417.
https://doi.org/10.1016/j.jacc.2021.07.055

85. Bularga A, Lee KK, Stewart S, et al. High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation 2019;140( 19):1557–1568.
https://doi.org/10.1161/CIRCULATIONAHA.119.042866

86. Chapman AR, Hesse K, MD, Andrews J, et al. High-sensitivity cardiac troponin I and clinical risk scores in patients with suspected acute coronary syndrome. Circulation 2018;138(16):1654–1665.
https://doi.org/10.1161/CIRCULATIONAHA.118.036426

87. Lee KK, Mills NL. High-sensitivity troponin: a barometer for cardiac health. Cardiovasc Res 2018;114(6):e36–e38. https://doi.org/10.1093/cvr/cvy080

88. Shah ASV, Anand A, Strachan FE, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet 2018;392(10151):919-928. http://dx.doi.org/10.1016/S0140-6736(18)31923-8

89. Mills NL, Omland T. Cardiac troponin to guide the use of noninvasive testing in patients ruled out for myocardial infarction. Circulation 2019;139 (14):1655-1657. https://doi.org/10.1161/CIRCULATIONAHA.118.038162

90. Newby DE, Adamson PD, Berry C, et al., for the SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 2018;379(10):924–933. https://doi.org/10.1056/NEJMoa1805971

91. Fraser CG, Harris EK. Generation and application of data on biological variation in clinical chemistry. Crit Rev Clin Lab Sci 1989;27(5):409-437. https://doi.org/10.3109/10408368909106595

92. van der Hagen EAE, Cobbaert CM, Meijer R, Thelen MHM. Fast 0/1-h algorithm for detection of NSTEMI: are current high-sensitivity cardiac troponin assays fit for purpose? An EQA-based evaluation. Clin Chem Lab Med 2019; 57(12): 1999–2007. https://doi.org/10.1515/cclm-2019-0253

93. Pareek M, Dyrvig Kristensen AM, Vaduganathan M, et al. Serial troponin-I and long-term outcomes in subjects with suspected acute coronary syndrome. Eur J Prev Cardiol 2024;31 (5):615-626.
https://doi.org/10.1093/eurjpc/zwad373

94. Hamm CW, Bassand J-P, Agewall S, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2011;32(23):2999-3054. https://doi.org/10.1093/eurheartj/ehr236

95. Wu AHB, Jaffe AS, Apple FS, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem 2007;53(12):2086–2096.
http://doi.org/10.1373/clinchem.2007.095679

96. Reichlin T, Irfan A, Twerenbold R, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011;124 (2):136–145.
https://doi.org/10.1161/CIRCULATIONAHA.111.023937

97. Morrow DA, Bonaca MP. Real-world application of “Delta” troponin. Diagnostic and prognostic implications. J Am Coll Cardiol 2013; 62(14):1239–1241. https://doi.org/10.1016/j.jacc.2013.06.049

98. Storrow AB, Nowak RM, Deborah B Diercks DB, et al. Absolute and relative changes (delta) in troponin I for early diagnosis of myocardial infarction: Results of a prospective multicenter trial. Clin Biochem 2015;48(4-5):260-267. https://doi.org/10.1016/j.clinbiochem.2014.09.012

99. Ishak M, Ali D, Fokkert MJ, et al. Fast assessment and management of chest pain patients without ST-elevation in the pre-hospital gateway (FamouS Triage): ruling out a myocardial infarction at home with the modified HEART score. Eur Heart J – Acute Cardiovasc Care 2018;7(2):102-110.
https://doi.org/10.1177/2048872616687116

100. Koper LH, Frenk LDS, Meeder JG, et al. URGENT1.5: diagnostic accuracy of the modified HEART score, with fingerstick point-of-care troponin testing, in ruling out acute coronary syndrome. Neth Heart J 2022;30(7-8):360-369. https://doi.org/10.1007/s12471-021-01646-8

101. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA 2000;284(7):8 35–842.
https://doi.org/10.1001/jama.284.7.835

102. Cullen L, Mueller C, Parsonage WA, et al. Validation of high-sensitivity troponin I in a 2-hour diagnostic strategy to assess 30-day outcomes in emergency department patients with possible acute coronary syndrome. J Am Coll Cardiol 2013;62(14):1242-1249. http://dx.doi.org/10.1016/j.jacc.2013.02.078

103. Ma C, Xiaoli Liu X, and Ma L. A new risk score for patients with acute chest pain and normal high sensitivity troponin. Frontiers Med 2022;8:72 8339. https://doi.org/10.3389/fmed.2021.728339

104. Fox KAA, Fitzgerald G, Puymirat E, et al. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated GRACE risk score. BMJ Open 2014;4(2):e004425. https://doi/org/10.1136/bmjopen-2013-004425

105. Vafaie M. State-of-the-art diagnosis of myocardial infarction. Diagnosis 2016;3(4):137-142.
https://doi.org/10.1515/dx-2016-0024

106. Aw TC, van Wijk XMR, Wu AHB, Jaffe AS. Release of cardiac troponin using a high sensitivity assay after exercise: Type 2 acute myocardial infarction? Clin Chim Acta 2015;446(1):6-8. http://dx.doi.org/10.1016/j.cca.2015.04.002

107. Cantor WJ, Newby LK (2006). Cardiac troponin after revascularization procedures. In: Morrow, D.A. (ed) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press, Totowa, NJ, 2006.
http://doi.org/10.1007/978-1-59745-051-5_7

108. Paolucci L, Mangiacapra F, Sergio S, et al. Periprocedural myocardial infarction after percutaneous coronary intervention and long-term mortality: a meta-analysis. Eur Heart J 2024;45(33): 3018-3027.
https://doi.org/10.1093/eurheartj/ehae266

109. Gaudino M, Jaffe AS, Milojevic M, et al. Great debate: myocardial infarction after cardiac surgery must be redefined. Eur Heart J 2024; online, ahead of print. https://doi.org/10.1093/eurheartj/ehae416

110. Pedersen CK, Stengaard C , Bøtker MT, Søndergaard HM, Dodt KK, Terkelsen CJ. Accelerated rule-out of acute myocardial infarction using prehospital copeptin and in-hospital troponin: The AROMI study. Eur Heart J 2023;44(38):3875-3889. https://doi.org/10.1093/eurheartj/ehad447

111. Möckel M, Searle J, Hamm C, et al. Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS):a randomized, controlled clinical process study. Eur Heart J 2015;36(6):369-376. https://doi.org/10.1093/eurheartj/ehu178

112. Keller T, Tzikas S, Zeller T, et al. Copeptin improves early diagnosis of acute myocardial infarction. J Am Coll Cardiol 2010;55(19):2096-2106. https://doi.org/10.1016/j.jacc.2010.01.029

113. Reichlin T, Hochholzer W, Stelzig C,et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 2009;54(1):60-68. https://doi.org/10.1016/j.jacc.2009.01.076

114. Sinning C, Ojeda F, Zeller T, et al. Cardiovascular mortality in chest pain patients: comparison of natriuretic peptides with novel biomarkers of cardiovascular stress. Can J Cardiol 2016;32(12):1470-1477.
http://dx.doi.org/10.1016/j.cjca.2016.05.010

115. Adamczyk M, Brashear RJ, Mattingly PG. Prevalence of autoantibodies to cardiac troponin T in healthy blood donors. Clin Chem 2009;55(8):15 92–1593. https://doi.org/10.1373/clinchem.2009.125781

116. Chew-Harris JSC, Brennan SO, Florkowski CM, Troughton R, George PM. Deciphering a macro-troponin I complex; a case report. Clin Chem Lab Med 2017;55(4):e77-e79. https://doi.org/10.1515/cclm-2016-0490

117. Plebani M, Mion M, Altinier S, Girotto MA, Baldo G, Zaninotto M. False-positive troponin I attributed to a macrocomplex. Clin Chem 2002;48 (4):677–679.
https://acoronaryarterydiseaseemic.oup.com/clinchem/article/48/4/677/5641672

118. Legendre-Bazydlo LA, Haverstick DM, Kennedy JLW, Dent JM, Bruns DE. Persistent increase of cardiac troponin I in plasma without evidence of cardiac injury. Clin Chem 2010;56(5):702–705.
https://doi.org/10.1373/clinchem.2009.138164

119. van der Linden N, Streng AS, Bekers O, Wodzig WKWH, Meex SJR, de Boer D. Large variation in measured cardiac troponin T concentrations after standard addition in serum or plasma of different individuals. Clin Chem 2017;63 (10):1655-1556. https://doi.org/10.1373/clinchem.2017.272435

120. Bohner J, von Pape KW, Hannes W, Stegmann T. False-negative immunoassay results for cardiac troponin I probably due to circulating troponin I autoantibodies. Clin Chem 1996;42(12): 2046.
https://doi.org/10.1093/clinchem/42.12.2046

121. Eriksson S, Junikka M, Petterson K. An interfering component in cardiac troponin I immunoassays - Its nature and inhibiting effect on the binding of antibodies against different epitopes. Clin Biochem 2004;37(6):472-480. https://doi.org/10.1016/j.clinbiochem.2004.01.007

122. Eriksson S, Janikka M, Laitinen P, Majamaa-Voltti K, Alfthan H, Pettersson K. Negative interference in cardiac troponin I immunoassays from a fequently occurring serum and plasma component. Clin Chem 2003;49(7):1095-1104. https://doi.org/10.1373/49.7.1095

123. Tang G, Wu Y, Zhao W, Shen Q. Multiple immunoassay systems are negatively interfered by circulating cardiac troponin I autoantibodies. Clin Exp Med 2012;12(1):47-53.
https://doi.org/10.1007/s10238-011-0141-x

124. Hammarsten O, Warner JV, Lam L, et al. Antibody-mediated interferences affecting cardiac troponin assays: recommendations from the IFCC Committee on Clinical Applications of Cardiac Biomarkers. Clin Chem Lab Med 2023;61(8):1411-1419. https://doi.org/10.1515/cclm-2023-0028

125. Monaghan PJ, Lord SJ, St. John A, et al. Biomarker development targeting unmet clinical needs. Clin Chim Acta 2016;460:211-219. https://doi.org/10.1016/j.cca.2016.06.037