Potential Association of Covid-19 mRNA Vaccination and Infections with the Antiphospholipid Antibody Syndrome

Main Article Content

E.J. Balbona, MD James Neuenschwander, MD Jennifer Margulis, PhD Stephanie Seneff, PhD

Abstract

Antiphospholipid Syndrome (APS) is an autoimmune reaction in which the immune system produces antibodies to specific phospholipids that are found in normal cells. Three specific antiphospholipid autoantibodies (APLs) characterize the antiphospholipid syndrome. The three diagnostic biomarkers of APS are the lupus anticoagulant (LA), the anticardiolipin antibody (aCL), and the anti-b2-glycoprotein-1 antibodies (B2GP1). The diagnostic criteria for APS require the presence of clinical thrombotic manifestations as well as the continued presence of antiphospholipid antibodies over at least a 12-week period. The prolonged period of observation required for diagnosis is an impediment to the recognition of APS and explains its subsequent low incidence of diagnosis in the inpatient setting. We hypothesize that undiagnosed post-COVID and/or post-COVID vaccine APS could be a factor in the rise in acute heart conditions and sudden unexplained deaths in otherwise healthy individuals, as well as other adverse health events. Therefore, we argue that clinicians must be more aware of APS and that clinical events that are temporally linked to or subsequent to either COVID-19 or SARS-CoV-2 mRNA vaccine exposures should be assessed for evidence of APS.

Keywords: Antiphospholipid Syndrome (APS), SARS-CoV-2, SARS-CoV-2 mRNA vaccines, Autoimmunity, VAERS, Thrombosis, Infertility

Article Details

How to Cite
BALBONA, E.J. et al. Potential Association of Covid-19 mRNA Vaccination and Infections with the Antiphospholipid Antibody Syndrome. Medical Research Archives, [S.l.], v. 12, n. 11, nov. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6049>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v12i11.6049.
Section
Research Articles

References

1. Mirtaleb MS, Falak R, Heshmatnia J, Bakhshandeh B, Taheri RA, Soleimanjahi H, Zolfaghari Emameh R. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. Int Immunopharmacol. 2023 Apr;117:109934. doi:10.1016/j.intimp.2023.109934.
2. Doshi P. COVID-19 vaccines: In the rush for regulatory approval, do we need more data? BMJ 2021; 373. doi: https://doi.org/10.1136/bmj.n1244.
3. Oba S, Altınay M, Salkaya A, Türk HŞ. Evaluation of the effect of clinical characteristics and intensive care treatment methods on the mortality of covid-19 patients aged 80 years and older. BMC Anesthesiol. 2021 Nov 22;21(1):291. doi: 10.1186/s12871-021-01511-6.
4. Dowd E, "Cause Unknown": The Epidemic of Sudden Deaths in 2021 & 2022 & 2023. Childrens Health Defense Books; Revised edition, March 5, 2024.
5. Tsuda T, Patel G. Coronary microvascular dysfunction in childhood: An emerging pathological entity and its clinical implications. Am Heart J Plus. 2024 Apr 12;42:100392. doi: 10.1016/j.ahjo.2024.100392.
6. Yang X, Zhao S, Wang S, Cao X, Xu Y, Yan M, Pang M, Yi F, Wang H. Systemic inflammation indicators and risk of incident arrhythmias in 478,524 individuals: evidence from the UK Biobank cohort. BMC Med. 2023 Feb 28;21(1):76. doi: 10.1186/s12916-023-02770-5.
7. Prati F, Gurguglione G, Biccire F, Cipolloni L, Ferrari M, Di Toro A, Arbustini E. Sudden cardiac death in ischaemic heart disease: coronary thrombosis or myocardial fibrosis? Eur Heart J Suppl. 2023 Apr 21;25(Suppl B):B136-B139. doi:10.1093/eurheartjsupp/suad093.
8. Ruiz-Irastorza G, Crowther M, Branch W, Khamashta MA. Antiphospholipid syndrome. The Lancet. Oct 2010;376(9751):1498-509.
9. Hughes G. Hughes Syndrome: The antiphospholipid syndrome -- a clinical overview. Clin Rev Allergy Immunol. 2007 Feb;32(1):3-12.
10. Cervera R, Piette JC, Font J, Khamashta MA, Shoenfeld Y, Camps MT, Jacobsen S, Lakos G, Tincani A, Kontopoulou-Griva I, Galeazzi M, Meroni PL, Derksen RH, de Groot PG, Gromnica-Ihle E, Baleva M, Mosca M, Bombardieri S, Houssiau F, Gris JC, Quéré I, Hachulla E, Vasconcelos C, Roch B, Fernández-Nebro A, Boffa MC, Hughes GR, Ingelmo M; Euro-Phospholipid Project Group. Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum. 2002 Apr;46(4):1019-27. doi: 10.1002/art.10187.
11. Talotta R, Robertson ES. Antiphospholipid antibodies and risk of post-COVID-19 vaccination thrombophilia: The straw that breaks the camel's back? Cytokine Growth Factor Rev. 2021 Aug; 60:52-60. Doi: 10.1016/j.cytogfr.2021.05.001. Epub 2021 May 28.
12. Dima A, Popescu DN, Moroti R, Stoica E, State G, Negoi F, Berza IA, Parvu M. Antiphospholipid Antibodies Occurrence in Acute SARS-CoV-2 Infection without Overt Thrombosis. Biomedicines. 2023 Apr 22;11(5):1241. doi:10.3390/biomedicines11051241.
13. Moreno-Torres V, Gutiérrez Á, Valdenebro M, Ortega A, Cítores MJ, Montero E. Catastrophic antiphospholipid syndrome triggered by mRNA COVID-19 vaccine. Clin Exp Rheumatol. 2022 May;40(5):1054-1055. doi:10.55563/clinexprheumatol/s3sbgu.
14. Seeley EA, Zimmer M, Berghea R. Suspected COVID-19 Immunization-Induced Probable Catastrophic Antiphospholipid Syndrome. Cureus. 2022 Jul 26;14(7):e27313. doi: 10.7759/cureus.27313.
15. Gérardin, C., Bihan, K., Salem, J. E., Khachatryan, H., Gerotziafas, G., Fain, O., & Mekinian, A. (2022). Drug-induced antiphospholipid syndrome: Analysis of the WHO international database. Autoimmunity Reviews, 21(5), 103060. https://doi.org/10.1016/j.autrev.2022.103060
16. Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol. 2022 Sep;35(3):101402. doi:10.1016/j.beha.2022.101402.
17. Zekić T, Belančić A. Antiphospholipid syndrome, thrombosis, and vaccination in the COVID-19 pandemic. Rheumatol Int. 2024 May;44(5):749-755. doi: 10.1007/s00296-023-05531-y.
18. Balbona EJ. A case of COVID mRNA vaccine linked antiphospholipid syndrome. Biomed Sci Clin Res, 2(1), 159-161.
19. Al-Ahmad M, Al Rasheed M, Altourah L, Rodriguez-Bouza T, Shalaby N. Lupus anticoagulant activity and thrombosis post COVID-19 vaccination. Blood Coagul Fibrinolysis. 2023 Jan 1;34(1):75-78. doi: 10.1097/MBC.0000000000001161.
20. Tektonidou MG. Cardiovascular disease risk in antiphospholipid syndrome: Thrombo-inflammation and atherothrombosis. J Autoimmun. 2022 Apr;128:102813. doi:10.1016/j.jaut.2022.102813.
21. McDonnell T, Wincup C, Buchholz I, Pericleous C, Giles I, Ripoll V, Cohen H, Delcea M, Rahman A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020 Jan;39:100610. doi:10.1016/j.blre.2019.100610.
22. Li J, Zhu X, Feng J. Role of β2-glycoprotein I in the pathogenesis of the antiphospholipid syndrome. Rheumatology & Autoimmunity 2023; 3(3): 131-139.
23. Perricone, F.R. Spinelli, Y. Shoenfeld, Chapter 5 - Atherosclerosis and Autoimmunity, Editor(s): Fabiola Atzeni, Andrea Doria, Michael Nurmohamed, Paolo Pauletto, Handbook of Systemic Autoimmune Diseases, Elsevier, Volume 14, 2017, Pages 123-154, ISSN 1571-5078,ISBN 9780128039977. doi: 10.1016/B978-0-12-803997-7.00005-3. https://www.sciencedirect.com/science/article/pii/B9780128039977000053
24. Rodrigues VO, Soligo AGES, Pannain GD. Antiphospholipid Antibody Syndrome and Infertility. Rev Bras Ginecol Obstet. 2019 Oct;41(10):621-627. English. doi: 10.1055/s0039-1697982.
25. Tong M, Kayani T, Jones DM, Salmon JE, Whirledge S, Chamley LW, Abra- hams VM. Antiphospholipid Antibodies Increase Endometrial Stromal Cell Decidu- alization, Senescence, and Inflammation via Toll-like Receptor 4, Reactive Oxygen Species, and p38 MAPK Signaling. Arthritis Rheumatol. 2022 Jun;74(6):1001-1012. doi: 10.1002/art.42068.
26. Fontes-Dantas FL, Fernandes GG, Gutman EG, De Lima EV, Antonio LS, Ham- merle MB, Mota-Araujo HP, Colodeti LC, Arajo SMB, Froz GM, da Silva TN, Duarte LA, Salvio AL, Pires KL, Leon LAA, Vasconcelos CCF, Romo L, Savio LEB, Silva JL, da Costa R, Clarke JR, Da Poian AT, Alves-Leon SV, Passos GF, Figueiredo CP. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction re- capitulating post-COVID-19 syndrome in mice. Cell Rep. 2023 Mar 28;42(3):112189. doi:10.1016/j.celrep.2023.112189.
27. Miyashita Y., Yoshida T., Takagi Y., Tsukamoto H., Takashima K., Kouwaki T., Makino K., Fukushima S., Nakamura K., Oshiumi H. Circulating extracellular vesicle microRNAs associated with adverse reactions, proinflammatory cytokine, and antibody production after COVID-19 vaccination. npj Vaccines. 2022;7:16. doi: 10.1038/s41541- 022-00439-3.
28. Berman J, Girardi G, Salmon JE. TNF-alpha is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. J Immunol. 2005 Jan 1;174(1):485-90. doi: 10.4049/jimmunol.174.1.485.
29. Shi W, Wang M, Xue X, Li N, Chen L, Shi J. Association Between Time Interval from COVID-19 Vaccination to In Vitro Fertilization and Pregnancy Rate After Fresh Embryo Transfer. JAMA Netw Open. 2022 Oct 3;5(10):e2236609. doi:10.1001/jamanet- workopen.2022.36609.
30. Milostić-Srb A, Srb N, Talapko pop, Meštrović T, Žiger T, Pačarić S, Fureš r, Makarović V, Škrlec I. The effect of COVID-19 and COVID-19 vaccination on assisted human reproduction outcomes: A systematic review and meta-analysis.Diseases. 2024; 12(9):201. https://doi.org/10.3390/diseases12090201.
31. Santos TDS, Ieque AL, de Carvalho HC, Sell AM, Lonardoni MVC, Demarchi IG, de Lima Neto QA, Teixeira JJV. Antiphospholipid syndrome and recurrent miscarriage: A systematic review and meta-analysis. J Reprod Immunol. 2017 Sep;123:78-87. doi: 10.1016/j.jri.2017.09.007.
32. Agency for Healthcare Research and Quality. Electronic Support for Public Health - Vaccine Adverse Event Reporting System (ESP:VAERS). Last accessed: October 11, 2024. https://digital.ahrq.gov/ahrq-funded-projects/electronic-support-public-health-vaccine-adverse-event-reporting-system.
33. Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022 Jun;164:113008. doi: 10.1016/j.fct.2022.113008.
34. Santos MS, de Carvalho JF, Brotto M, Bonfa E, Rocha FA. Peripheral neuropathy in patients with primary antiphospholipid (Hughes') syndrome. Lupus 2010; 19: 583–90. doi: 10.1177/0961203309354541
35. Farmer-Boatwright MK, Roubey RA. Venous thrombosis in the antiphospholipid syndrome. Arterioscler Thromb Vasc Biol. 2009 Mar;29(3):321-5. doi: 10.1161/ATVBAHA.108.182204.
36. Yeo J, Shin N, Ahn KJ, Seo M, Jang AY, Kim M, Chung WJ. Pulmonary arterial hypertension due to antiphospholipid syndrome initially mimicking chronic thromboembolic pulmonary hypertension. Clin Hypertens. 2022 Apr 1;28(1):10. doi:https://doi.org/10.1186/s40885-021-00191-1
37. Shi M, Gao W, Jin Y, Zhu J, Liu Y, Wang T, Li C. Antiphospholipid Syndrome-Related Pulmonary Embolism: Clinical Characteristics and Early Recognition. Front Cardiovasc Med. 2022 Jul 11;9:872523. doi: 10.3389/fcvm.2022.872523.
38. Dhibar DP, Sahu KK, Varma SC, Kumari S, Malhotra P, Mishra AK, Vaiphei K, Khanal S, Suri V, Singhal M. Intra-cardiac thrombus in antiphospholipid antibody syndrome: An unusual cause of fever of unknown origin with review of literature. J Cardiol Cases. 2016 Sep 6;14(5):153-156. doi:10.1016/j.jccase.2016.07.005.
39. Skoura R, Andronikidi PE, Anestakis D, Petanidis S, Orovou E, Tzitiridou M, Eskitzis P. Antiphospholipid Syndrome and Preeclampsia in Pregnancy: A Case Report. Cureus. 2022 Aug 27;14(8):e28458. doi: 10.7759/cureus.28458.
40. Belhocine M, Coutte L, Martin Silva N, Morel N, Guettrot-Imbert G, Paule R, Le Jeunne C, Fredi M, Dreyfus M, Piette JC, Souchaud-Debouverie O, Deneux-Tharaux C, Tsatsaris V, Pannier E, Le Guern V, Costedoat-Chalumeau N. Intrauterine fetal deaths related to antiphospholipid syndrome: a descriptive study of 65 women. Arthritis Res Ther. 2018 Nov 6;20(1):249. doi: 10.1186/s13075-018-1745-2.
41. Vinatier D, Dufour P, Cosson M, Houpeau JL. Antiphospholipid syndrome and recurrent miscarriages. Eur J Obstet Gynecol Reprod Biol. 2001 May;96(1):37-50. doi:10.1016/s0301-2115(00)00404-8.
42. Fonseca DLM, Filgueiras IS, Marques AHC, Vojdani E, Halpert G, Ostrinski Y, et al. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: A systems biology approach. NPJ Aging. 2023 Aug 24; 9(1):21. doi: 10.1038/s41514-023-00118-0.
43. Cifu A. Domenis R, Pistis C, Curcio F, Fabris M. Anti-beta2-glycoprotein I and anti-phosphatidylserine/ prothrombin antibodies exert similar pro-thrombotic effects in peripheral blood monocytes and endothelial cells. Autoimmunity Highlights. 2019 Apr 6; 10(1)3. doi:10.1186/s13317-019-0113-9
44. Bertin D, Brodovitch A, Lopez A, Arcani R, Thomas GM, Beziane A, Weber S, Babacci, B, Heim X, Rey L, Leone M, Mege JL, Bardin N. Anti-Cardiolipin IgG Autoantibodies Associate with Circulating Extracellular DNA in Severe COVID-19. Sci Rep. 2022 Jul 22; 12(1):12523. doi: 10.1038/s41598-022-15969-y
45. Borghi MO, Bombaci M, Bodio C, Lonati PA, Gobbini A, Lorenzo M, Torresani E, Dubini A, Bulgarelli I, Solari F, Pregnolato F, Bandera A, Gori A, Parati G, Abrignani S, Grifantini R, Meroni PL. Anti-Phospholipid Antibodies and Coronavirus Disease 2019: Vaccination Does Not trigger Autoantibody Production in Healthcare Workers. Front Immunol. 2022 Jul 15; 13:930074. doi: 10.3389/fimmu.2022.930074
46. Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, Flanagan KL, Plebanski M. Antibodies Against Spike Protein Correlate with Broad Autoantigen Recognition 8 Months Post SARS-CoV-2 Exposure, and Anti-Calprotectin Autoantibodies Associated with Better Clinical Outcomes. Front Immunol. 2022 Aug 11; 13:945021. doi: 10.3389/fimmu.2022.945021
47. Lyons-Weiler J. Pathogenic Priming Likely Contributes to Serious and Critical Illness and Mortality in COVID-19 via Autoimmunity. J Transl Autoimmun. 2020 Apr 9; 3:100051. doi: 10.1016/j.jtauto.2020.100051
48. Vojdani A, Vojdani E, Kharrazian D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins with Tissue antigens: Implications for Autoimmune Diseases. Front Immunol. 2021 Jan 19; 11:617089. Doi: 10.3389/fimmu.2020.617089
49. Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability. Mol Ther. 2008 Sept 16; 16(11):1833. doi: 10.1038/mt.2008.200
50. Lee Y; Jeong M, Park J, Jung H, Lee H. Immunogenicity of Lipid Nanoparticles and its Impact on the Efficacy of mRNA vaccines and Therapeutics. Exp Mol Med. 2023 Oct 2; 10:2085. doi: 0.1038/s12276-023-01086-x
51. Tahtinen S, Tong AJ, Himmels P, Oh J, Paler-Martinez A, Kim L, Wichner S, Oei Y, McCarron MJ, Freund EC, Amir ZA, de la Cruz CC, Haley B, Blanchette C, Schartner JM, Ye W, Yadav M, Sahin U, Delamarre L, Mellman I. IL-1 and IL-1ra are Key Regulators of the Inflammatory Response to RNA Vaccines. Nat Immunol. 2022 Mar 24; 23(4):532. doi: 10.1038/s41590-022-01160-y
52. Rohm F, King E, Hoffman R, Meisinger C, Linseisen J. Prevalence of a Large Panel of Systemic Autoantibodies in the Bavarian Adult Population. Front Immunol. 2024 Feb 8; 15:1255905. doi:10.3389/fimmu.2024.1355905
53. Kayukawa S, Nanya K, Morita M, Ina K, Ota Y, Hasegawa S. Spike Antibody Titers Evaluation After a 2-Dose Regimen of BNT162b2 Vaccination in Healthcare Workers Previously Infected with SARS-CoV-2. Microbiol Spectrum. 2021 Nov 10; 9(3)01036-21. doi:10.1128/Spectrum.01036-21
54. Tan J, Misra N, Reddy S. Should every patient with an unprovoked venous thromboembolism have a hypercoagulable workup? Cleve Clin J Med. 2024 Sep 3;91(9):531-533. doi:10.3949/ccjm.91a.24016.