SSA autoantibodies associated with severely decreased free thyroxine levels in systemic autoimmune mixed connective tissue disease
Main Article Content
Abstract
Background: Mixed connective tissue disease (MCTD) is a systemic autoimmune disease with variable symptoms and autoantibodies. Antinuclear antibody positivity is more common in autoimmune thyroid diseases with higher levels of antibodies to thyroid peroxidase (TPO) or thyroglobulin (Tg) leading to elevated TSH levels. Intracellular SSA autoantibodies have a direct role in tissue damage with a prevalence of 33% in MCTD.
Aims: To investigate the role of SSA autoantibodies in thyroid autoimmunity in MCTD patients. The effect of SSA autoantibodies on thyroid hormone levels was investigated in the presence and absence of thyroid autoimmunity.
Methods: Thirty-three patients with MCTD [41±10 years, 32 females and 1 male] and 34 healthy controls [33±14 years, 30 females and 4 males] were studied. Thyroid hormones (TSH, FT4 and FT3) were measured by luminescence immunoassay. Enzyme-linked immunosorbent assay was used for the detection of anti-TPO and anti-Tg autoantibodies. Biochemical data are presented as geometric mean with 95% confidence interval except for age and FT3/FT4 ratio, which are presented as mean±SD.
Results: Significant differences in age and serum FT4 levels were observed between MCTD patients and controls (41±10 vs. 33±14 years, p<0.0089 and 8.83(3.55-22) vs. 10.82(7.33-15.96) pmol/l, p<0.0229, respectively). The difference in serum TSH and FT4 levels was significant between SSA autoantibody positive MCTD patients and controls [2.43(0.42-13.96) vs. 1.63(0.75-3.53) mIU/ml, p<0.0405 for TSH, 6.59(2.22-19.53) vs. 10.82(7.33-15.96) pmol/l, p<0.0001 for FT4]. The greater decrease in serum FT4 levels could be demonstrated by the presence of SSA in combination with anti-Tg [3.74(1.37-10.18) vs. 11.05(8.57-14.24) pmol/l, p<0.001] or anti-TPO autoantibodies [4.68(1.65-13.28) vs. 11.75(6.05-22.8) pmol/l, p<0.0001] compared to those thyroid antibodies alone.
Conclusions: Our results showed that SSA autoantibodies together with anti-TPO and/or anti-Tg autoantibodies resulted in a greater decrease in serum FT4 levels than SSA autoantibodies alone. The effect of SSA autoantibodies on FT4 levels may be manifested in the absence of thyroid autoimmunity. These results highlight the importance of screening for thyroid hormone and autoantibody levels in MCTD patients regardless of thyroid autoimmunity.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Wanzenried A, Garaiman A, Jordan S, Distler O, Maurer B. The enigma of mixed connective tissue disease-challenges in routine care. Clin Rheumatol 2022;41: 3503-3511. doi:10.1007/s’0067-022-06286-w.
3. Sapkota B, Khalili Y. Mixed connective tissue disease. StatPearls Publishing, 2024. https://www.ncbi.nlm.nih.gov/books/NBK542198/
4. Jones D, Anjanappa JC, Hiremath S, et al. The prevalence of thyroid dysfunction in patients with connective tissue disorders. Asian Journal of Med Sci 202;12(7):33-36. doi:10.3126/ ajms.v12i7.34998.
5. Bíró E, Szekanecz Z, Czirják L, et al. Association of systemic and thyroid autoimmune diseases. Clin Rheumatol 2006; 25:240-245.doi:10.1007/s1006-005-1165-y.
6. Calder EA, Irvine WJ. Cell-mediated immunity and immune complexes in thyroid disease. Clin Endocrinol and Metab 1975;4(2):287-318. doi:10.1016/S0300-595X(75)80023-5.
7. Dominiques SL, Gonçalves FT, Jorge MLMP, Limongi JE, Ranza R, Jorge PT. High prevalence of hypothyroidism in systemic lupus erythematosus patients without and increase in circulating antithyroid antibodies. Endocr Pract 2017; 23(11): 1304-1310. doi:10.41586/EP161664.
8. Garga A, Helbig M, Schauer M, Nguyen M. A complex case of polymyositis overlapping with hypothyroid myopathy without underlying autoimmune thyroid disorder. Cureus 2020;12(6):1-5. doi:10. 7759/cureus.8629.
9. Setty YN, Pittman CB, Mahale AS, Greidinger EL, Hoffman RW. Sicca symptoms and anti-SSA/Ro antibodies are common in mixed connective tissue disease. J Rheumatol 2002;29(3):487-489. https://www.jrheum.org/content/29/3/487.
10. Yoshimi R, Ueda A, Ozato K, Ishigatsubo Y. Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol 2012; Vol 2012, Article ID: 606196, 12 pages. doi:10.1155/2012/ 606195.
11. Robbins A, Hentzien M, Toquet S, et al. Diagnostic utility of separate anti-Ro60 and anti-Ro52/TRIM21 antibody detection in autoimmune diseases. Front Immunol 10:444. doi:10.3389/fimmu.2019.00444.
12. Lazúrová I, Benhatchi K. Autoimmune thyroid diseases and nonorgan-specific autoimmunity. Pol Archiv Med Wewn 2012; 122(Suppl 1):56-58. https://pubmed.ncbi. nlm.nih. gov/23222800/.
13. Pedro ABP, Romaldini JH, Americo C, Takei K. Association of circulating antibodies against double-stranded and single-stranded DNA with thyroid autoantibodies in Graves’ disease and Hashimoto’s thyroiditis patients. Exp Clin Endocrinol Diabetes 2006;114(1):35-38. doi:10.1055/s2005-873005.
14. Liu YJ, Miao Hb, Lin S, Chen Z. Association between rheumatoid arthritis and thyroid dysfunction: A meta-analysis and systemic review. Front Endocrinol 13:1015516. doi: 10.3389/fendo.2022. 1015516.
15. Alercón-Segovia D, Villareal M. Classification and diagnostic criteria for mixed connective tissue disease, In: Kasukawa R, Sharp GC: Mixed Connective tissue disease and antinuclear antibodies, eds. by Toyo T, Miyawaki S, Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, 1987:33-40.
16. Bodolay E, Csiki Z, Szekanecz Z, et al. Five-year follow-up of 665 Hungarian patients with undifferentiated conncetive tissue disease (UCTD). Clin Exp Rheumatol 2003;21:313-320. https://pubmed.ncbi.nlm.nih.gov/12846049/
17. Bodolay E, Csípő I, Gál I, et al. Anti-endothelial cell antibodies in mixed connective tissue disease: Frequency and association with clinical symptoms. Clin Exp Rheumatol 2004; 22:409-415. https://pubmed.ncbi.nlm.nih.gov/15301236/
18. Ruan Y, Heng Xp, Yang Lq, et al.. Relationship between autoimmune thyroid antibodies and anti-nuclear antibodies in general patients. Front Endocrinol 15: 1368088. doi:10.3389/ fendo.2024. 1368088.
19. Baldini C. Ferro F, Mosca M, Fallahi P, Antonelli A. The association of Sjögren syndrome and autoimmune thyroid disorders. Front Endocrinol 9:121. doi:10. 3389/fendo. 2018.00121.
20. Goëb V, Salle V, Duhaut P, et al. Clinical significance of autoantibodies recognizing Sjögren’s syndrome A (SSA), SSA, calpastatin and alpha-fodrin in primary Sjögren’s syndrome. Clin Exp Immunol 2007; 148:281-287. doi:10.1111 /j.1365. 2249.2007.03337.x.
21. Kelly-Scumpia KM, Nacionales DC, Scumpia PO, et al. In vivo adjuvant activity of the RNA component the Sm/RNP lupus autoantigen. Arthritis Rheum 2007;56(10): 3379-3386. doi:10.1002/art.2294.
22. Fallahi P, Ruffilli I, Giuggioli D, et al. Associations between systemic sclerosis and thyroid diseases. Front Endocrinol 8:266. doi: 10.3389/fendo.2017.00266.
23. Wajner SM, Maia AL. New insights toward the acute non-thyroidal illness syndrome. Front Endocrinol 2012;3, 1-7. doi:10.3389/fendo.2012.00008.
24. Molnár I, Czirják L. Euthyroid sick syndrome and inhibitory effect of sera on the activity og thyroid 5’-deiodinase in systemic sclerosis. Clin Exp Rheumatol 2000;18:719-724. https://pubmed.ncbi. nlm.nih.gov/11138334/.
25. Hedlund M, Thorlacius GE, Ivanchenko M, et al. Type I IFN system activation in newborns exposed to Ro/SSA and La/SSB autoantibodies in utero. RMD 2020; 6: e00989.doi:10.1136/mdopen-2019-00989.
26. Wu M, Wan Y, Zhao L, et al. Association between thyroid autoimmunity and antinuclear antibody prevalence among pregnant women: a cross-sectional study in Qingdao, China. Front Endocrinol 15: 1403917.doi:10.3389/fendo.2024.1403917.
27. Brito-Zerón P, Izmirly PM, Ramos-Casals M, Buyon JP, Khamashta MA. The clinical spectrum of autoimmune congenital heart block. Nat Rev Rheumatol 2015;11(5): 301-312. doi:10.1038/nrrheum.2015.29.
28. Lin L, Hang H, Zhang J, Lu J, Chen D, Shi J. Clinical significance of anti-SSA/Ro antibody in Neuromyelitis optica spectrum disorders. MSARD 2022;58:1-6. doi:10. 1016/j.msard.2022.103494.
29. Soltesz P, Bereczki D, Szodoray P, et al. Endothelial cell markers reflecting edothelial cell dysfunction in patients with mixed connective tissue disease. Arthritis Res Ther 2010; 12:R78-R88. doi: 10.1186/ ar2999.
30. Tudoran M, Tudoran C. Particularities of endothelial dysfunction in hypothyroid patients. Kardiol Pol 2015;5:337-343. doi:10.5603/Kpa2014.0241.
31. Udovcic M, Pena RH, Patham B, Tabatabai L, Kansara A. Hypothyroidism and the heart. MDCVJ 2017;XIII(2):55-59.
32. Giuffrida G, Bagnato G, Campenni A, et al. Non-specific rheumatic manifestations in patients with Hashimoto’s thyroiditis: a pilot cross-sectional study. J Endocrinol Invest 2020;43(1):87-94. doi: 10.1007/s40618-019-01083-w.
33. Mountz JD. Significance of increased circulating proteasome in autoimmune disease. J Rheumatol 2022;29(10):2027-2030. https://www.jrheum.org/content/ 29/10/2027.long.
34. Egerer K, Kuckelkorn U, Rudolph PE, et al. Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol 2020; 29(10):2045-2052. https://www.jrheum. org/content/jrheum/29/10/2045.
35. Chen M, von Mikecz A. Proteasomal processing of nuclear autoantigen: systemic autoimmunity. Autoimmun Rev 2005;4(3): 117122. doi:10.1016/j.autrev. 2004.08.038.