Virus Retentive Filters - Effective Virus Removal in the Manufacturing Process of Biologicals

Main Article Content

Albrecht Groner

Abstract

inactivation or removal – have to be implemented to assure a high margin of virus safety of these products. Orthogonal mechanisms of virus clearance should be integrated in the manufacturing process in order to inactivate / remove viruses/virus aggregates having been able to escape to a certain degree the reduction capacity of the previous virus clearance step. Virus retentive filters as an orthogonal virus clearance step are frequently implemented in the manufacturing process of biologicals as the virus removal capacity of virus retentive filters is based on size exclusion. Only the size of a virus impacts the removal capacity and not virus properties as enveloped/ non-enveloped or RNA / DNA viruses and their resistance to physiochemical treatment. Viruses larger than the mean pore size of a virus retentive filter are removed from the feed stream and the desired protein – if smaller than the pore size of the filter membrane – will pass the filter and can be collected in the filtrate without / with very low virus contamination. Depending on the filter pore size, virus retentive filters are grouped in large and small virus retentive filters i.e., filters removing large viruses as retroviruses and small viruses as picornaviruses and, especially, parvoviruses. Data of virus reduction factors from 89 publications, resulting in a total of close to 500 virus clearance studies for different viruses, product intermediates and large and small virus retentive filters are assessed. The virus clearance capacity of these filters can depend on the membrane layout and chemistry, the volumetric throughput of product intermediate as well as of buffer flush and transmembrane pressure including pressure/flow interruption and flow decay. These parameters, when disclosed in published data, show filter brand specific differences but, having the above-mentioned parameters for each filter optimised, effective virus removal could mostly be demonstrated in virus validation studies for each filter brand.

Article Details

How to Cite
GRONER, Albrecht. Virus Retentive Filters - Effective Virus Removal in the Manufacturing Process of Biologicals. Medical Research Archives, [S.l.], v. 12, n. 12, dec. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6084>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v12i12.6084.
Section
Research Articles

References

1. CPMP/BWP/268/95. Note for guidance on virus validation studies: The design, contribution and interpretation of studies validating the inactivation and removal of viruses. 14 February 1996. Accessed December 2, 2024.
https://www.ema.europa.eu/en/virus-validation-studies-design-contribution-interpretation-studies-validating-inactivation-removal-viruses-scientific-guideline
2. ICH Harmonised Guideline. Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin Q5A(R2), adopted on 1 November 2023. Accessed December 2, 2024. https://database.ich.org/sites/default/files/ICH_Q5A%28R2%29_Guideline_2023_1101.pdf
3. EMA/CHMP/BWP/706271/2010. Guideline on plasma-derived medicinal products. 21 July 2011. Accessed December 2, 2024. https://www.ema.europa.eu/en/plasma-derived-medicinal-products-scientific-guideline
4. Johnson SA, Chen S, Bolton G, et al. Virus filtration: a review of current and future practices in bioprocessing. Biotechnol Bioeng. 2022;119(3):743-761. doi: 10.1002/bit.28017
5. Ajayi OO, Johnson SA, Faison T, et al. An updated analysis of viral clearance unit operations for biotechnology manufacturing. Curr Res. Biotechnol. 2022;4:190-202. doi.org/10.1016/j.crbiot.2022.03.002
6. Roth NJ, Dichtelmüller HO, Fabbrizzi F, et al. Nanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 years' experience of the plasma protein manufacturers. Transfusion. 2020;60(11):2661-2674. doi: 10.1111/trf.16022
7. Virus Retentive Filtration. Technical report No. 41 (Revised 2022). Parenteral Drug Association. 2022.
8. Wieser A, Modrof J, Kreil TR. Protection of biomanufacturing processes from virus contamination through upstream virus filtration of cell culture media. Biotechnol Bioeng 2023;120(10):2917-2924. doi: 10.1002/bit.28473
9. Chen D, Bolton G. Proceedings of the 2017 Viral Clearance Symposium, Session 1.2: Upstream Mitigation, Part 2 – Virus Barrier Filter and HTST. PDA J Pharm Sci Technol 2018;72(5):462-469. doi:10.5731/pdajpst.2018.009092
10. Burnouf-Radosevich M, Appourchaux P, Huart JJ, Burnoug T. Nanofiltration, a new specific virus elimination method applied to high-purity Factor IX and Factor XI concentrates. Vox Sang 1994;67(2):132-138. doi: 10.1111/j.1423-0410
11. Römisch J, List W, Bernhardt D, et al. Nanofiltration bei der Herstellung des PPSB-Konzentrates Beriplex® P/N. Hämostaseologie 1995;15(3):171-178. DOI: 10.1055/s-0038-1655307
12. Lute S, Riordan W, Pease LF 3rd, et al. A consensus rating method for small virus-retentive filters. I. Method development. PDA J Pharm Sci Technol 2008;62(5):318-333. PMID: 19055228.
13. Brorson K, Lute S, Haque M, et al. A consensus rating method for small virus-retentive filters. II. Method evaluation. PDA J Pharm Sci Technol 2008;62(5):334-343. PMID: 19055229
14. Brorson K, Sofer G, Aranha H. Nomenclature standardization for ‘large pore size’ virus-retentive filters. PDA J Pharm Sci Technol 2005;59(6):341-345. PMID: 16471421
15. Bao R-M, Shibuya A, Uehira T, et al. Successful removal of porcine circovirus-1 from immunoglobulin G formulated in glycine solution using nanofiltration. Biologicals 2018;51:32-36. doi:10.1016/j.biologicals.2017.10.006
16. Hilfenhaus J, Gröner A, Nowak T, Weimer T. Analysis of human plasma products: polymerase chain reaction does not discriminate between live and inactivated viruses. Transfusion 1997;37(9):935-940. doi: 10.1046/j.1537-2995.1997.37997454021.x.
17. Brorson K, Krejci S, Lee K, Hamilton E, Steil K, Xu Y. Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 2003;82(3):321-329. doi:10.1002/bit.10574
18. Anwaruzzaman M, Wang W, Wang E, Erfe L, Lee J, Lui S. Evaluation of infectivity and reverse transcriptase real-time polymerase chain reaction assays for detection of xenotropic murine leukemia virus used in virus clearance validation. Biologicals 2015;43(4):256-265. doi:10.1016/j.biologicals.2015.04.001
19. Tsujikawa M, Ohkubo Y, Masuda M, et al. Caution in evaluation of removal of virus by filtration: Misinterpretation due to detection of viral genome fragments by PCR. J Virol Methods 2011;178(1-2):39-43. doi:10.1016/j.jviromet.2011.08.009
20. Zhao X, Bailey MR, Emery WR, Lambooy PK, Chen D. Evaluation of viral removal by nanofiltration using real-time quantitative polymerase chain reaction. Biotechnol Appl Biochem 2007;47(Pt 2):97-104. doi:10.1042/BA20060195
21. Blümel J, Musso D, Teitz S, et al. Inactivation and removal of Zika virus during manufacturing of plasma-derived medicinal products. Transfusion 2017;57(3pt2):790-796. doi:10.1111/trf.13873
22. Yue C, Teitz S, Miyabashi T, et al. Inactivation and removal of Chikungunya virus and Mayaro virus from plasma-derived medicinal products. Viruses. 2019;11(3):234. doi:10.3390/v11030234
23. Preparation of virus spike used for virus clearance studies. Technical Report No. 47. Parenteral Drug Association. 2010
24. Slocum A, Burnham M, Genest P, Venkiteshwaran A, Chen D, Hughes J. Impact of virus preparation quality on parvovirus filter performance. Biotechnol Bioeng. 2013;110(1):229-239. doi:10.1002/bit.
25. Roush DJ, Myrold A, Burnham MS, And JV, Hughes JV. Limits in virus filtration capacity? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus. Biotechnol Prog. 2015;31(1):135-144. doi:10.1002/btpr.2020
26. Hongo-Hirasaki T, Yamaguchi K, Yanagida K, Hayashida H, Ide S. Effects of varying virus-spike conditions on a virus-removal filter Planova 20N in a virus validation study of antibody solutions. Biotechnol Prog. 2011;27(1):162-169. doi:10.1002/btpr.533
27. Bolton G. Spector S, LaCasse D. Increasing the capacity of parvovirus retentive membranes: Performance of the Viresolve prefilter. Biotechnol Appl Biochem. 2006;43(Pt 1):55-63. doi:10.1042/BA20050108
28. Brown A, Bechtel C, Bill J, et al. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration. Biotechnol Bioeng. 2010;106(4):627-637. doi:10.1002/bit.22729
29. Ellgaard TW, Bindslev L, Kamstrup S. Evaluation of the virus clearance capacity and robustness of the manufacturing process for the recombinant factor VIII protein, turoctocog alfa. Protein Expr Purif. 2017;129:94-100. doi:10.1016/j.pep.2016.09.002
30. Kozaili J, Shah A, Robbins D, et al. Serial filtration: a case study evaluating the product-dependent impact of control strategies on process efficiency. Biotechnol J. 2023;18(9):e2200599. doi:10.1002/biot.202200599
31. Omar A, Kempf C. Removal of neutralized model parvoviruses and enteroviruses in human IgG solutions by nanofiltration. Transfusion. 2002;42(8):1005-1010. doi:10.1046/j.1537-2995.2002.00145.x
32. Kreil TR, Wieser A, Berting A, et al. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacturing of plasma derivatives. Transfusion. 2006;46(7):1143-1151. doi:10.1111/j.1537-2995.2006.00864.x
33. Kapsch A-M, Farcet MR, Wieser A, et al. Antibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulin. Transfusion. 2020;60(11):2500-2507. doi:10.1111/trf.16014
34. Burnouf-Radosevich M, Appourchaux P, Huart JJ, Burnouf T. Nanofiltration, a new specific virus elimination method applied to high-purity factor IX and factor XI concentrates. Vox Sang. 1994;67(2):132-138. doi:10.1111/j.1423-0410.1994.tb01647.x
35. Eibl J, Barrett N, Hämmerle T, Dorner F. Nanofiltration of immunoglobulin with 35-nm filters fails to remove substantial amounts of HCV. Biologicals. 1996;24(3):285-287. doi:10.1006/biol.1996.0036
36. Stanley B, Holmes V, Manzari R, et al. Twenty plus years of data demonstrating virus filtration as an effective and robust step for large virus removal. PDA J Pharm Sci Technol. 2022;76(1):1-8. doi:10.5731/pdajpst.2020.012591
37. Miesegaes G, Lute S, Brorson K. Analysis of virus clearance unit operations for monoclonal antibodies. Biotechnol Bioeng. 2010;106(2):238-246. doi:10.1002/bit.22662
38. Mattila J, Clark M, Liu S, et al. Erratum for John Mattila, Mike Clark, Shengjiang Liu, et al.: "Retrospective Evaluation of Low-pH Viral Inactivation and Viral Filtration Data from a Multiple Company Collaboration". PDA J Pharm Sci Technol. 2018;72(4):451. doi:10.5731/pdajpst.2017.007963
39. Lute S, Bailey M, Combs J, Sukumar M, Brorson K. Phage passage after extended processing in small-virus-retentive filters. [published correction appears in Biotechnol Appl Biochem. 2007 Sep;48(Pt 1):63]. Biotechnol Appl Biochem. 2007;47(Pt 3):141-151. doi:10.1042/BA20060254
40. Kayukawa T, Yanagibashi A, Hongo-Hirasaki T, Yanagida K. Particle-based analysis elucidates the real retention capacities of virus filters and enables optimal virus clearance study design with evaluation systems of diverse virological characteristics. Biotechnol Prog. 2022;38(2):e3237. doi:10.1002/btpr.3237
41. Barnard JG, Kahn D, Cetlin D, Randolph TW, Carpenter JF. Investigations into the fouling mechanism of parvovirus filters during filtration of freeze-thawed mAb drug substance solutions. J Pharm Sci. 2014;103(3):890-899. doi:10.1002/jps.23881
42. Isu S, Qian X, Zydney AL, Wickramasinghe SR. Process- and product-related foulants in virus filtration. Bioengineering (Basel). 2022;9(4):155. doi:10.3390/bioengineering9040155
43. Bolton G, Cabatingan M, Rubino M, Lute S, Brorson K, Bailey M. Normal-flow virus filtration: detection and assessment of the endpoint in bio-processing. Biotechnol Appl Biochem. 2005;42(Pt 2):133-142. doi:10.1042/BA20050056
44. Wieser A, Berting A, Medek C, Poelsler G, Kreil TR. Virus filtration and flow variation: an approach to evaluate any potential impact on virus retention. PDA J Pharm Sci Technol. 2016;70(4):325-331. doi:10.5731/pdajpst.2015.006346
45. Nazem-Bokaee H, Chen D, O’Donnell SM, Zydney AL. New insights into the performance characteristics of the Planova-series hollow-fiber parvovirus filters using confocal and electron microscopy. Biotechnol Bioeng. 2019;116(8):2010-2017. doi:10.1002/bit.26991
46. Leisi R, Widmer E, Gooch B, Roth NJ, Ros C. Mechanistic insight into flow-dependent virus retention in different nanofilter membranes. J Membr Sci 2021;636:119548. doi.org/10.1016/j.memsci.2021.119548
47. Leisi R, Rostami I, Laughhunn A, et al. Visualizing protein fouling and its impact on parvovirus retention within distinct filter membrane morphologies. J Membr Sci 2022;659:120791. doi.org/10.1016/j.memsci.2022.120791
48. LaCasse D, Genest P, Pizzelli K, Greenhalgh P, Mullin L, Slocum A. Impact of process interruption on virus retention of small-virus filters. BioProcess Int 2013;11(10):34-44
49. Dishari SK, Venkiteshwaran A, Zydney AL. Probing effects of pressure release on virus capture during virus filtration using confocal microscopy. Biotechnol Bioeng. 2015;112(10):2115-2122. doi:10.1002/bit.25614
50. Yamamoto A, Hongo-Hirasaki T, Uchi Y, Hayashida H, Nagoya F. Effect of hydrodynamic forces on virus removal capability of Planova filters. AIChE J 2014;60:2286-97. doi.org/10.1002/aic.14392
51. Gustafsson O, Gustafsson S, Manukyan L, Mihranyan A. Significance of Brownian motion for nanoparticle and virus capture in nanocellulose-based filter paper. Membranes (Basel). 2018;8(4):90. doi:10.3390/membranes8040090
52. Fallahianbijan F, Giglia S, Carbrello C, Zydney AL. Quantitative analysis of internal flow distribution and pore interconnectivity within asymmetric virus filtration membranes. J Membr Sci 2020;595:117578.
53. Silveira JR, Raymond GJ, Hughson AG, et al. The most infectious prion protein particles. Nature. 2005;437(7056):257-261. doi:10.1038/nature03989
54. CPMP/BWP/CPMP/5136/03. Guideline on the investigation of manufacturing processes for plasma-derived medicinal products with regard to vCJD risk. 21.October 2004. Accessed December 2, 2024.
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-manufacturing-processes-plasma-derived-medicinal-products-regard-variant-creutzfeldt-jakob-disease-risk_en.pdf
55. Truchot L, Arnaud T, Bloy C, Perret-Liaudet A. CJD PrPsc removal by nanofiltration process: Application to a therapeutic immunoglobulin solution (Lymphoglobuline®). Biologicals. 2006;34(3):227-231. doi:10.1016/j.biologicals.2005.11.007
56. Cardone F, Simoneau S, Arzel A, et al. Comparison of nanofiltration efficacy in reducing infectivity of centrifuged versus ultracentrifuged 263K scrapie-infected brain homogenates in “spiked” albumin solutions. Transfusion. 2012;52(5):953-962. doi:10.1111/j.1537-2995.2011.03425.x
57. Yunoki M, Tanaka H, Urayama T, et al. Prion removal by nanofiltration under different experimental conditions. Biologicals. 2008;36(1):27-36. doi:10.1016/j.biologicals.2007.04.005
58. Stucki M, Boschetti N, Schäfer W, et al. Investigations of prion and virus safety of a new liquid IVIG product. Biologicals. 2008;36(4):239-247. doi:10.1016/j.biologicals.2008.01.004
59. Yunoki M, Tanaka H, Urayama T, et al. Infectious prion protein in the filtrate even after 15 nm filtration. Biologicals. 2010;38(2):311-313. doi:10.1016/j.biologicals.2009.10.018
60. Diez JM, Caballero S, Belda F, Otegui M, Gajardo R, Jorquera JI. Capacity of the manufacturing process of Flebogamma(®) DIF, a new human high purity intravenous immunoglobulin, to remove a TSE model agent. Biologicals. 2010;38(6):670-674. doi:10.1016/j.biologicals.2010.08.003
61. Goussen C, Simoneau S, Bérend S, et al. Biological safety of a highly purified 10% liquid intravenous immunoglobulin preparation from human plasma. BioDrugs. 2017;31(3):251-261. doi:10.1007/s40259-017-0222-9
62. Roberts PL, Dalton J, Evans D, et al. Removal of TSE agent from plasma products manufactured in the United Kingdom. Vox Sang. 2013;104(4):299-308. doi:10.1111/vox.12004
63. Winge S, Yderland L, Kannicht C, et al. Development, upscaling and validation of the purification process for human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII produced in a human cell-line. Protein Expr Purif. 2015;115:165-175. doi:10.1016/j.pep.2015.08.023
64. Garger S, Severs J, Regan L, et al. BAY 81-8973, a full-length recombinant factor VIII: manufacturing processes and products characteristics. Haemophilia. 2017;23(2):e67-e78. doi:10.1111/hae.13148
65. Schulz PM, Gehringer W, Nöhring S, et al. Biochemical characterization, stability, and pathogen safety of a new fibrinogen concentrate (fibryga®). Biologicals. 2018;52:72-77. doi:10.1016/j.biologicals.2017.12.003
66. ICH Harmonised Guideline. Continuous manufacturing of drug substances and drug products Q13, Adopted on 16 November 2022. Accessed December 2, 2024. https://database.ich.org/sites/default/files/ICH_Q13_Step4_Guideline_2022_1116.pdf
67. Lute S, Kozaili J, Johnson S, Kobayashi K, Strauss D. Development of small-scale models to understand the impact of continuous downstream bioprocessing of integrated virus filtration. Biotechnol Prog. 2020;36(3):e2962. doi:10.1002/btpr.2962
68. Kozaili J, Rayfield W, Gospodarek A, Brower M, Strauss D. Adapting virus filtration to continuous processing: Effects of product and process variability on filtration performance. Biotechnol Prog. 2024;40(2):e3407. doi:10.1002/btpr.3407
69. Hwang M, Wang J, Jung SY. Understanding the residence time distribution in a transient inline spiking system: Modeling, experiments, and simulations. Membranes (Basel). 2023;13(4):375. doi:10.3390/membranes13040375
70. Kerr A, Nims R. Adventitious viruses detected in biopharmaceutical bulk harvest samples over a 10 year period. PDA J Pharm Sci Technol. 2010;64(5):481-485.
71. Barone PW, Wiebe ME, Leung JC, et al. Viral contamination in biologic manufacture and implications for emerging therapies. Nat Biotechnol. 2020;38(5):563-572. doi:10.1038/s41587-020-0507-2
72. Schleh M, Romanowski P, Bhebe P, et al. Susceptibility of mouse minute virus to inactivation by heat in two cell culture media types. Biotechnol Prog. 2009;25(3):854-860. doi:10.1002/btpr.181
73. Cao X, Stimpfl G, Wen Z-Q, Frank G, Hunter G. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method. PDA J Pharm Sci Technol. 2013;67(1):63-73. doi:10.5731/pdajpst.2013.00894
74. Yen S, Sokolenko S, Manocha B, Blondeel EJM, Aucoin MG. Treating cell culture media with UV irradiation against adventitious agents: Minimal impact on CHO performance. Biotechnol Prog. 2014;30(5):1190-1195. doi:10.1002/btpr.1942
75. Gauvin G, Nims R. Gamma-irradiation of serum for the inactivation of adventitious contaminants. Biotechnol Prog. 2014;30(5):1190-1195. doi:10.1002/btpr.1942
76. Mann K, Royce J, Carbrello C, et al. Protection of bioreactor culture from virus contamination by use of a virus barrier filter. BMC Proceedings 2015;9(Suppl 9):P22. doi:10.1186/1753-6561-9-S9-P22
77. ICH Harmonised Guideline. Technical and regulatory considerations for pharmaceutical product lifecycle management Q12, adopted on 20 November 2019. Accessed December 2, 2024. https://database.ich.org/sites/default/files/Q12_Guideline_Step4_2019_1119.pdf