Achieving Chronic Care Equity by Leveraging the Telehealth Ecosystem (ACCTIVATE): A Multilevel Randomized Controlled Trial Protocol

Main Article Content

Adenike Omomukuyo, MPH Andy Ramirez, BS Aliyah Davis, BS Alexandra Velasquez, MS CCRP Adriana L Najmabadi, MEA Marianna Kong, MD Rachel Willard-Grace, MPH William Brown III, PhD DrPH MA Andrew Broderick Charles E McCulloch, PhD MS MA Nora Franco, BA MSIS Urmimala Sarkar, MD MPH Courtney Lyles W, PhD Amber S Tran, BA Anjana E Sharma, MD MAS Delphine S Tuot, MDCM MAS

Abstract

Background: Racial/ethnic and socioeconomic disparities in diabetes and hypertension outcomes persist in the United States (U.S.), and worsened during the COVID-19 pandemic. This was in part due to suboptimal implementation of telehealth in U.S. safety-net settings alongside the pre-existing “digital divide” – structural determinants that limit access to digital tools by marginalized communities. To improve health equity, it is critical that health systems in the U.S. integrate principles of digital and health literacy for more equitable chronic disease care.


Methods: We are conducting a 2x2 factorial randomized controlled trial, in partnership with a Community Advisory Board, assessing a multi-level intervention addressing barriers that affect the equitable use of telehealth amongst low-income patients in San Francisco County. Patient-level support is provided through the evidence-based strategies of health coaching and digital navigation (“digital coaching”); clinic-level support includes equity dashboards, patient advisory councils, and practice facilitation. We are randomizing 600 low-income, racially/ethnically diverse English and Spanish-speaking patients with uncontrolled diabetes to receive digital coaching (n=200) vs. usual care (n=400) for 3 months; and 11 public health primary care clinics to clinic support vs. usual care for 24 months. We aim to evaluate the impact of patient and clinic level interventions to determine individual effectiveness and potential synergistic impact on clinical and process measures related to diabetes and telehealth outcomes.


Results: The study's primary clinical outcome is change in patient-level Hemoglobin A1C (A1c); the primary process outcome is patient portal usage. Secondary clinical outcomes include changes in patient-level systolic blood pressure (SBP) and microalbuminuria (UACR), and changes in clinic-level A1c, SBP, and UACR. Secondary process outcomes assess patient-level changes in digital literacy, medication adherence, patient activation, and visit show rates, and clinic-level measures of telehealth adoption.


Discussion: The ACCTiVATE trial tests a multi-level intervention developed through a stakeholder-engaged research approach and user-centered design to be feasible and acceptable for impacted communities. If efficacious, ACCTiVATE may provide a scalable model to improve chronic health outcomes and telehealth equity among marginalized racial/ethnic populations experiencing structural and interpersonal access barriers.

Article Details

How to Cite
OMOMUKUYO, Adenike et al. Achieving Chronic Care Equity by Leveraging the Telehealth Ecosystem (ACCTIVATE): A Multilevel Randomized Controlled Trial Protocol. Medical Research Archives, [S.l.], v. 12, n. 11, nov. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6087>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v12i11.6087.
Section
Research Articles

References

1. Mannoh I, Hussien M, Commodore-Mensah Y, Michos ED. Impact of social determinants of health on cardiovascular disease prevention. Curr Opin Cardiol. 2021;36(5):572-579. doi:10.1097/HCO.0000000000000893
2. Powell-Wiley TM, Baumer Y, Baah FO, et al. Social Determinants of Cardiovascular Disease. Circ Res. 2022;130(5):782-799. doi:10.1161/CIRCRESAHA.121.319811
3. Jilani MH, Javed Z, Yahya T, et al. Social Determinants of Health and Cardiovascular Disease: Current State and Future Directions Towards Healthcare Equity. Curr Atheroscler Rep. 2021;23(9):55. doi:10.1007/s11883-021-00949-w
4. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153-e639. doi:10.1161/CIR.0000000000001052
5. Grotto I, Huerta M, Sharabi Y. Hypertension and socioeconomic status. Curr Opin Cardiol. 2008;23(4):335-339. doi:10.1097/HCO.0b013e3283021c70
6. Meng YY, Diamant A, Jones J, et al. Racial and Ethnic Disparities in Diabetes Care and Impact of Vendor-Based Disease Management Programs. Diabetes Care. 2016;39(5):743-749. doi:10.2337/dc15-1323
7. The Disparate Impact of Diabetes on Racial/Ethnic Minority Populations | Clinical Diabetes | American Diabetes Association. Accessed February 3, 2023. https://diabetesjournals.org/clinical/article/30/3/130/30876/The-Disparate-Impact-of-Diabetes-on-Racial-Ethnic
8. Gaskin DJ, Hadley J. Population characteristics of markets of safety-net and non-safety-net hospitals. J Urban Health Bull N Y Acad Med. 1999;76(3):351-370. doi:10.1007/BF02345673
9. Maringe C, Spicer J, Morris M, et al. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. Lancet Oncol. 2020;21(8):1023-1034. doi:10.1016/S1470-2045(20)30388-0
10. Reduced Access to Care - Household Pulse Survey - COVID-19. March 4, 2024. Accessed September 4, 2024. https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm
11. Managing Medicare Beneficiaries with Chronic Conditions During the COVID-19 Pandemic. doi:10.26099/j3c3-7p61
12. Czeisler MÉ, Marynak K, Clarke KEN, et al. Delay or Avoidance of Medical Care Because of COVID-19-Related Concerns - United States, June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(36):1250-1257. doi:10.15585/mmwr.mm6936a4
13. Chudasama YV, Gillies CL, Zaccardi F, et al. Impact of COVID-19 on routine care for chronic diseases: A global survey of views from healthcare professionals. Diabetes Metab Syndr. 2020;14(5):965-967. doi:10.1016/j.dsx.2020.06.042
14. Patel SY, Mehrotra A, Huskamp HA, Uscher-Pines L, Ganguli I, Barnett ML. Variation In Telemedicine Use And Outpatient Care During The COVID-19 Pandemic In The United States. Health Aff Proj Hope. 2021;40(2):349-358. doi:10.1377/hlthaff.2020.01786
15. Uscher-Pines L, Sousa J, Jones M, et al. Telehealth use among safety-net organizations in California during the COVID-19 pandemic. JAMA. 2021;325(11):1106-1107. doi:10.1001/jama.2021.0282
16. Ackerman SL, Sarkar U, Tieu L, et al. Meaningful use in the safety net: a rapid ethnography of patient portal implementation at five community health centers in California. J Am Med Inform Assoc JAMIA. 2017;24(5):903-912. doi:10.1093/jamia/ocx015
17. Remote Patient Monitoring in the Safety Net: What Payers and Providers Need to Know.
18. Khoong EC, Olazo K, Rivadeneira NA, et al. Mobile health strategies for blood pressure self-management in urban populations with digital barriers: systematic review and meta-analyses. Npj Digit Med. 2021;4(1):1-12. doi:10.1038/s41746-021-00486-5
19. Bray EP, Holder R, Mant J, McManus RJ. Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials. Ann Med. 2010;42(5):371-386. doi:10.3109/07853890.2010.489567
20. Mobile Fact Sheet. Pew Research Center. January 31, 2024. Accessed September 4, 2024. https://www.pewresearch.org/internet/fact-sheet/mobile/
21. Lopez AB Gustavo López and Mark Hugo. Digital Divide Narrows for Latinos as More Spanish Speakers and Immigrants Go Online. Pew Research Center. July 20, 2016. Accessed September 4, 2024. https://www.pewresearch.org/race-and-ethnicity/2016/07/20/digital-divide-narrows-for-latinos-as-more-spanish-speakers-and-immigrants-go-online/
22. Khoong EC, Butler BA, Mesina O, et al. Patient interest in and barriers to telemedicine video visits in a multilingual urban safety-net system. J Am Med Inform Assoc JAMIA. 2021;28(2):349-353. doi:10.1093/jamia/ocaa234
23. Tieu L, Schillinger D, Sarkar U, et al. Online patient websites for electronic health record access among vulnerable populations: portals to nowhere? J Am Med Inform Assoc JAMIA. 2017;24(e1):e47-e54. doi:10.1093/jamia/ocw098
24. Tieu L, Sarkar U, Schillinger D, et al. Barriers and Facilitators to Online Portal Use Among Patients and Caregivers in a Safety Net Health Care System: A Qualitative Study. J Med Internet Res. 2015;17(12):e275. doi:10.2196/jmir.4847
25. Alkureishi MA, Choo ZY, Rahman A, et al. Digitally Disconnected: Qualitative Study of Patient Perspectives on the Digital Divide and Potential Solutions. JMIR Hum Factors. 2021;8(4):e33364. doi:10.2196/33364
26. Jain V, Al Rifai M, Lee MT, et al. Racial and Geographic Disparities in Internet Use in the U.S. Among Patients With Hypertension or Diabetes: Implications for Telehealth in the Era of COVID-19. Diabetes Care. 2021;44(1):e15-e17. doi:10.2337/dc20-2016
27. Sharma AE, Khoong EC, Sierra M, et al. System-Level Factors Associated With Telephone and Video Visit Use: Survey of Safety-Net Clinicians During the Early Phase of the COVID-19 Pandemic. JMIR Form Res. 2022;6(3):e34088. doi:10.2196/34088
28. Samuels-Kalow M, Jaffe T, Zachrison K. Digital disparities: designing telemedicine systems with a health equity aim. Emerg Med J. 2021;38(6):474-476. doi:10.1136/emermed-2020-210896
29. Sharma AE, Khoong EC, Nijagal MA, et al. Clinician Experience with Telemedicine at a Safety-net Hospital Network during COVID-19: A Cross-sectional Survey. J Health Care Poor Underserved. 2021;32(2S):220-240. doi:10.1353/hpu.2021.0060
30. Michaels L, Anastas T, Waddell EN, Fagnan L, Dorr DA. A Randomized Trial of High-Value Change Using Practice Facilitation. J Am Board Fam Med. 2017;30(5):572-582. doi:10.3122/jabfm.2017.05.170013
31. Miller R, Weir C, Gulati S. Transforming primary care: scoping review of research and practice. J Integr Care Brighton Engl. 2018;26(3):176-188. doi:10.1108/JICA-03-2018-0023
32. Washington DL, Bowles J, Saha S, et al. Transforming clinical practice to eliminate racial-ethnic disparities in healthcare. J Gen Intern Med. 2008;23(5):685-691. doi:10.1007/s11606-007-0481-0
33. Peikes D, Anglin G, Dale S, et al. Evaluation of the Comprehensive Primary Care Initiative: Fourth Annual Report. Math Policy Res Rep. Accessed February 1, 2023. https://ideas.repec.org//p/mpr/mprres/31b437e81685456388e78e18b9af8c30.html
34. Dickinson WP, Nease DE, Rhyne RL, et al. Practice Transformation Support and Patient Engagement to Improve Cardiovascular Care: From EvidenceNOW Southwest (ENSW). J Am Board Fam Med. 2020;33(5):675-686. doi:10.3122/jabfm.2020.05.190395
35. Wallerstein N, Oetzel JG, Sanchez-Youngman S, et al. Engage for Equity: A Long-Term Study of Community-Based Participatory Research and Community-Engaged Research Practices and Outcomes. Health Educ Behav Off Publ Soc Public Health Educ. 2020;47(3):380-390. doi:10.1177/1090198119897075
36. Wisniewski H, Gorrindo T, Rauseo-Ricupero N, Hilty D, Torous J. The Role of Digital Navigators in Promoting Clinical Care and Technology Integration into Practice. Digit Biomark. 2020;4(Suppl 1):119-135. doi:10.1159/000510144
37. Grossman LV, Masterson Creber RM, Benda NC, Wright D, Vawdrey DK, Ancker JS. Interventions to increase patient portal use in vulnerable populations: a systematic review. J Am Med Inform Assoc JAMIA. 2019;26(8-9):855-870. doi:10.1093/jamia/ocz023
38. McGloin H, Timmins F, Coates V, Boore J. A case study approach to the examination of a telephone-based health coaching intervention in facilitating behaviour change for adults with Type 2 diabetes. J Clin Nurs. 2015;24(9-10):1246-1257. doi:10.1111/jocn.12692
39. Patrick K, Norman GJ, Davila EP, et al. Outcomes of a 12-month technology-based intervention to promote weight loss in adolescents at risk for type 2 diabetes. J Diabetes Sci Technol. 2013;7(3):759-770. doi:10.1177/193229681300700322
40. Young H, Miyamoto S, Ward D, Dharmar M, Tang-Feldman Y, Berglund L. Sustained effects of a nurse coaching intervention via telehealth to improve health behavior change in diabetes. Telemed J E-Health Off J Am Telemed Assoc. 2014;20(9):828-834. doi:10.1089/tmj.2013.0326
41. Herring SJ, Cruice JF, Bennett GG, Davey A, Foster GD. Using technology to promote postpartum weight loss in urban, low-income mothers: a pilot randomized controlled trial. J Nutr Educ Behav. 2014;46(6):610-615. doi:10.1016/j.jneb.2014.06.002
42. Willard-Grace R, Chen EH, Hessler D, et al. Health coaching by medical assistants to improve control of diabetes, hypertension, and hyperlipidemia in low-income patients: a randomized controlled trial. Ann Fam Med. 2015;13(2):130-138. doi:10.1370/afm.1768
43. Willard-Grace R, Chirinos C, Wolf J, et al. Lay Health Coaching to Increase Appropriate Inhaler Use in COPD: A Randomized Controlled Trial. Ann Fam Med. 2020;18(1):5-14. doi:10.1370/afm.2461
44. Thom DH, Willard-Grace R, Hessler D, et al. The impact of health coaching on medication adherence in patients with poorly controlled diabetes, hypertension, and/or hyperlipidemia: a randomized controlled trial. J Am Board Fam Med JABFM. 2015;28(1):38-45. doi:10.3122/jabfm.2015.01.140123
45. Willard-Grace R, Wolf J, Huang B, Lewis E, Su G. Pilot of Brief Health Coaching Intervention to Improve Adherence to Positive Airway Pressure Therapy. Jt Comm J Qual Patient Saf. 2020;46(11):631-639. doi:10.1016/j.jcjq.2020.08.011
46. Thom DH, Ghorob A, Hessler D, De Vore D, Chen E, Bodenheimer TA. Impact of peer health coaching on glycemic control in low-income patients with diabetes: a randomized controlled trial. Ann Fam Med. 2013;11(2):137-144. doi:10.1370/afm.1443
47. Jelinek M, Vale MJ, Liew D, et al. The COACH program produces sustained improvements in cardiovascular risk factors and adherence to recommended medications-two years follow-up. Heart Lung Circ. 2009;18(6):388-392. doi:10.1016/j.hlc.2009.06.001
48. Sharma AE, Willard-Grace R, Hessler D, Bodenheimer T, Thom DH. What Happens After Health Coaching? Observational Study 1 Year Following a Randomized Controlled Trial. Ann Fam Med. 2016;14(3):200-207. doi:10.1370/afm.1924
49. On the Front Lines of Health Equity: Community Health Workers.
50. Aguilar-Gaxiola S, Ahmed SM, Anise A, et al. Assessing Meaningful Community Engagement: A Conceptual Model to Advance Health Equity through Transformed Systems for Health. NAM Perspect. 2022:10.31478/202202c. doi:10.31478/202202c
51. NIMHD Research Framework. NIMHD. Accessed September 12, 2024. https://www.nimhd.nih.gov/researchFramework
52. Richardson S, Lawrence K, Schoenthaler AM, Mann D. A framework for digital health equity. Npj Digit Med. 2022;5(1):119. doi:10.1038/s41746-022-00663-0
53. Ghorob A. Health coaching: teaching patients to fish. Fam Pract Manag. 2013;20(3):40-42.
54. Harrison JD, Palmer NRA, Cabrera A, et al. Addressing the challenges of conducting community-engaged research during COVID-19: Rapid development and evaluation of a COVID-19 Research Patient and Community Advisory Board (PCAB). J Clin Transl Sci. 2022;6(1):e88. doi:10.1017/cts.2022.413
55. SF Tech Council. SF Tech Council. Accessed September 30, 2024. https://www.sftechcouncil.org
56. Putnam C, Rose E, Johnson EJ, Kolko B. Adapting user-centered design methods to design for diverse populations. USC Annenberg Sch Commun Journal. 2009;5(4):51-73.
57. LeRouge C, Wickramasinghe N. A Review of User-Centered Design for Diabetes-Related Consumer Health Informatics Technologies. J Diabetes Sci Technol. 2013;7(4):1039-1056. doi:10.1177/193229681300700429
58. S0501: SELECTED CHARACTERISTICS OF ... - Census Bureau Table. Accessed September 11, 2024. https://data.census.gov/table/ACSST1Y2019.S0501?q=S0501:%20SELECTED%20CHARACTERISTICS%20OF%20THE%20NATIVE%20AND%20FOREIGN-BORN%20POPULATIONS&moe=false
59. Vollbrecht H, Arora V, Otero S, Carey K, Meltzer D, Press VG. Evaluating the Need to Address Digital Literacy Among Hospitalized Patients: Cross-Sectional Observational Study. J Med Internet Res. 2020;22(6):e17519. doi:10.2196/17519
60. Huang B, De Vore D, Chirinos C, et al. Strategies for recruitment and retention of underrepresented populations with chronic obstructive pulmonary disease for a clinical trial. BMC Med Res Methodol. 2019;19(1):39. doi:10.1186/s12874-019-0679-y
61. Booker SQ, Bartley EJ, Powell-Roach K, et al. The Imperative for Racial Equality in Pain Science: A Way Forward. J Pain. 2021;22(12):1578-1585. doi:10.1016/j.jpain.2021.06.008
62. O’Connor S, Hanlon P, O’Donnell CA, Garcia S, Glanville J, Mair FS. Understanding factors affecting patient and public engagement and recruitment to digital health interventions: a systematic review of qualitative studies. BMC Med Inform Decis Mak. 2016;16(1):120. doi:10.1186/s12911-016-0359-3
63. Bodenheimer T, Ghorob A, Willard-Grace R, Grumbach K. The 10 Building Blocks of High-Performing Primary Care. Ann Fam Med. 2014;12(2):166-171. doi:10.1370/afm.1616
64. Healthy Food Vouchers - San Francisco, CA. EatSF. Accessed September 27, 2024. https://eatsfvoucher.org/
65. Tlapa D, Tortorella G, Fogliatto F, et al. Effects of Lean Interventions Supported by Digital Technologies on Healthcare Services: A Systematic Review. Int J Environ Res Public Health. 2022;19(15):9018. doi:10.3390/ijerph19159018
66. Deblois S, Lepanto L. Lean and Six Sigma in acute care: a systematic review of reviews. Int J Health Care Qual Assur. 2016;29(2):192-208. doi:10.1108/IJHCQA-05-2014-0058
67. Ojo B, Feldman R, Rampersad S. Lean methodology in quality improvement. Paediatr Anaesth. 2022;32(11):1209-1215. doi:10.1111/pan.14439
68. Michie S, van Stralen MM, West R. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implement Sci. 2011;6(1):42. doi:10.1186/1748-5908-6-42
69. Sharma P, Patten CA, Tilburt JC, et al. Development and initial cognitive testing of the Digital Equity Screening Tool (DEST): Community participatory approach to assessing digital inequality. J Clin Transl Sci. 2022;6(1):e117. doi:10.1017/cts.2022.451
70. Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care. 1986;24(1):67-74. doi:10.1097/00005650-198601000-00007
71. Hibbard JH, Stockard J, Mahoney ER, Tusler M. Development of the Patient Activation Measure (PAM): Conceptualizing and Measuring Activation in Patients and Consumers: Development of the Patient Activation Measure (PAM). Health Serv Res. 2004;39(4p1):1005-1026. doi:10.1111/j.1475-6773.2004.00269.x
72. Grossman LV, Masterson Creber RM, Benda NC, Wright D, Vawdrey DK, Ancker JS. Interventions to increase patient portal use in vulnerable populations: a systematic review. J Am Med Inform Assoc. 2019;26(8-9):855-870. doi:10.1093/jamia/ocz023
73. De las Cuevas C, Peñate W. Psychometric properties of the eight-item Morisky Medication Adherence Scale (MMAS-8) in a psychiatric outpatient setting. Int J Clin Health Psychol IJCHP. 2015;15(2):121-129. doi:10.1016/j.ijchp.2014.11.003
74. Morisky DE. Predictive Validity of a Medication Adherence Measure for Hypertension Control. J Clin Hypertens. 2008;10:348-354.
75. Ortega G, Rodriguez JA, Maurer LR, et al. Telemedicine, COVID-19, and disparities: Policy implications. Health Policy Technol. 2020;9(3):368-371. doi:10.1016/j.hlpt.2020.08.001
76. Kim JH, Desai E, Cole MB. How the rapid shift to telehealth leaves many community health centers behind during the COVID-19 pandemic. Health Affairs. Accessed October 16, 2020. https://www.healthaffairs.org/do/10.1377/hblog20200529.449762/full/
77. Medi-Cal NewsFlash: Medi-Cal Coverage of Community Health Worker (CHW) Services is Effective July 1, 2022. Accessed February 1, 2023. https://files.medi-cal.ca.gov/pubsdoco/newsroom/newsroom_31781_01.aspx
78. Baskerville NB, Liddy C, Hogg W. Systematic Review and Meta-Analysis of Practice Facilitation Within Primary Care Settings. Ann Fam Med. 2012;10(1):63-74. doi:10.1370/afm.1312