Biological activity of polyoxometalates and their applications in anti-aging

Main Article Content

Katsuaki Dan Hseng-Long Yeh

Abstract

Polyoxometalates (PM) exhibit a wide range of biological activities, such as antimicrobial, antitumor, and antiviral properties against neurodegenerative diseases and have been investigated for applications in catalysis and energy accumulation. Some PMs are more active than existing medicines; however, they have not been applied. In order to utilize PM, which has been found to have a wide variety of biological activities, we have discovered the possibility of bringing it into the anti-aging field. Recently, the global average life expectancy has increased, and cancer and senescence reveal an integral relationship to this aspect. For example, in anti-aging research, eliminating senescent cells from the body can increase life expectancy. Cancerous cells are either arrested during cell division as they are perceived as senescent cells or directed toward cell death by apoptosis or ferroptosis. Cancer cells are also resistant to these processes. Such interactions between cancer cells and biological defense mechanisms can also be applied to normal cells, which may lead to anti-aging effects. This review focuses on the literature available on PM, identifies the effects that broadly encompass age-related diseases from conventional disease-by-disease correspondence, and describes its potential in novel aspects of anti-aging.

Article Details

How to Cite
DAN, Katsuaki; YEH, Hseng-Long. Biological activity of polyoxometalates and their applications in anti-aging. Medical Research Archives, [S.l.], v. 12, n. 12, dec. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6108>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v12i12.6108.
Section
Review Articles

References

1. Moonshot Goal 1 Realization of a society in which human beings can be free from limitations of body, brain, space, and time by 2050. https://www.cao.go.jp/index-e.html.
2. De Clercq E. Antiviral therapy for human immunodeficiency virus infections. Clin Microbiol Rev. 1995;8(2):200-239. doi:10.1128/CMR.8.2.200.
3. Shigeta S. Recent progress in anti-influenza chemotherapy. Drugs R D. 1999;2(3):153-164. doi:10.2165/00126839-199902030-00001.
4. De Clercq E. New developments in anti-HIV chemotherapy. Curr Med Chem. 2001;8(13):1543-1572. doi:10.2174/0929867013371842.
5. De Clercq E. New developments in anti-HIV chemotherapy. Biochim Biophys Acta. 2002;1587(2-3):258-275. doi:10.1016/S0925-4439(02)00089-3.
6. Yamase T. Polyoxometalates active against tumors, viruses, and bacteria. Prog Mol Subcell Biol. 2013;54:65-116. doi:10.1007/978-3-642-41004-8_4.
7. Yamase T. Photochemical studies of the alkylammonium molybdates. Part 6. Photoreducible octahedron site of [Mo7O24]6- as determined by electron spin resonance. JCS. Dalton Trans. 1982:1987-1991.
8. Yamase T. Antitumoral and antiviral polyoxometalates (inorganic discrete polymers of metal oxide). In: Salamone JC, ed. Polymeric Materials Encyclopedia: Synthesis, Properties, and Applications. Boca Raton, FL: CRC Press; 1996.
9. Yamase T. Photoredox chemistry of polyoxometalates as a photocatalyst. Catal Surv Asia. 2003;7(4):203-217. doi:10.1023/B:CATS.0000008161.21857.0d.
10. Dan K, Miyashita K, Seto Y, Yamase T. Quantitation of herpes simplex viral DNA in Vero cells for evaluation of an antiviral agent using the polymerase chain reaction. J Virol Methods. 1998;76(1-2):73-79. doi:10.1016/s0166-0934(98)00124-4.
11. Dan K, Miyashita K, Seto Y, Fujita H, Yamase T. The memory effect of heteropolyoxotungstate (PM-19) pretreatment on infection by herpes simplex virus at the penetration stage. Pharmacol Res. 2002;46(4):357-361. doi:10.1016/s1043661802001706.
12. Dan K, Miyashita K, Seto Y, Fujita H, Yamase T. Mechanism of the protective effect of heteropolyoxotungstate (PM-19) against herpes simplex virus type 2. Pharmacology. 2003;67(2):83-89. doi:10.1159/000067738.
13. Dan K, Yamase T. Prevention of the interaction between HVEM, herpes virus entry mediator, and gD, HSV envelope protein, by a Keggin polyoxotungstate, PM-19. Biomed Pharmacother. 2006;60(4):169-173. doi:10.1016/j.biopha.2006.02.005.
14. Jasmin C, Raybaud N, Chermann JC, et al. In vivo effects of silicotungstate on some RNA viruses. Biomedicine. 1973;18(4):319-327.
15. Jasmin C, Chermann JC, Hervé G, et al. In vivo inhibition of murine leukemia and sarcoma viruses by the heteropolyanion 5-tungsto-2-antimonate. J Natl Cancer Inst. 1974;53(2):469-474. doi:10.1093/jnci/53.2.469.
16. Hill CL, Weeks MS, Schinazi RF. Anti-HIV activity, toxicity, and stability studies of representative structural families of polyoxometalates. J Med Chem. 1990;33(10):2767-2772. doi:10.1021/jm00172a014.
17. Inouye Y, Take Y, Tokutake Y, et al. Inhibition of replication of human immunodeficiency virus by a heteropolyoxotungstate (PM-19). Chem Pharm Bull (Tokyo). 1990;38(1):285-287. doi:10.1248/cpb.38.285.
18. Fukuma M, Seto Y, Yamase T. In vitro antiviral activity of polyoxotungstate (PM-19) and other polyoxometalates against herpes simplex viruses. Antiviral Res. 1991;16(4):327-339. doi:10.1016/0166-3542(91)90047-u.
19. Take Y, Tokutake Y, Inouye Y, et al. Inhibition of proliferation of human immunodeficiency virus type 1 by novel heteropolyoxotungstates in vitro. Antiviral Res. 1991;15(2):113-124. doi:10.1016/0166-3542(91)90029-q.
20. Weeks MS, Hill CL, Schinazi RF. Synthesis, characterization, and anti-human immunodeficiency virus activity of water-soluble salts of polyoxotungstate anions with covalently attached organic groups. J Med Chem. 1992;35(7):1216-1221. doi:10.1021/jm00085a008.
21. Yamamoto N, Schols D, De Clercq E, et al. Mechanism of anti-human immunodeficiency virus action of polyoxometalates, a class of broad-spectrum antiviral agents. Mol Pharmacol. 1992;42(6):1109-1117.
22. Ikeda S, Nishiya S, Yamamoto A, Yamase T, Nishimura C, De Clercq E. Activity of the Keggin polyoxotungstate PM-19 against herpes simplex virus type 2 infection in immunosuppressed mice; role of peritoneal macrophage activation. J Med Virol. 1993;41(3):191-195. doi:10.1002/jmv.1890410304.
23. Shigeta S, Mori S, Watanabe J, Yamase T, Schinazi RF. In vitro antimyxovirus activity and mechanism of anti-influenza virus activity of polyoxometalates PM-504 and PM-523. Antivir Chem Chemother. 1996;7(6):346-352. doi:10.1177/095632029600700608.
24. Shigeta S, Mori S, Watanabe J, Soeda S, Takahashi K, Yamase T. Synergistic anti-influenza virus A (H1N1) activities of PM-523 (polyoxometalate) and ribavirin in vitro and in vivo. Antimicrob Agents Chemother. 1997;41(7):1423-1427. doi:10.1128/AAC.41.7.1423.
25. Barnard DL, Hill CL, Gage T, et al. Potent inhibition of respiratory syncytial virus by polyoxometalates of several structureclasses. Antiviral Res. 1997;34(1):27-37. doi:10.1016/s0166-3542(96)01019-4.
26. Rhule JT, Hill CL, Judd DA, Schinazi RF. Polyoxometalates in medicine. Chem Rev. 1998;98(1):327-358. doi:10.1021/cr960396q.
27. Witvrouw M, Weigold H, Pannecouque C, Schols D, De Clercq E, Holan G. Potent anti-HIV(type 1 and type 2) activity of polyoxometalates: structure-activity relationship and mechanism of action. J Med Chem. 2000;43(5):778-783. doi:10.1021/jm980263s.
28. Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K, Yamase T. Broad spectrum anti-RNA virus activities of titanium or vanadium substituted polyoxotungstates. Antiviral Res. 2003;58(3):265-271. doi:10.1016/s0166-3542(03)00009-3.
29. Yamase T, Botar B, Ishikawa E, Fukaya K. Chemical structure and intramolecular spinexchange interaction of [(VO)3(SbW9O33)2]12-. Chem Lett. 2001:56-57.
30. Yamase T, Botar B, Ishikawa E, Fukaya K, Shigeta S. Magnetic exchange coupling and potent antiviral activity of [(VO)3(SbW9O33)2]12-. In: Yamase T, Pope MT, eds. Polyoxometalate Chemistry for Nanocomposite Design. Dordrecht: Kluwer Publishers; 2002.
31. Ikeda S, Nishiya S, Yamamoto A, Yamase T, Nishimura C, De Clercq E. Antiviral activity of a keggin polyoxotungstate PM-19 against herpes simplex virus in mice. Antivir Chem Chemother. 1994;5(1):47-50. doi:10.1177/095632029400500107.
32. Gilbert BE, Knight V. Biochemistry and clinical application of ribavirin. Antimicrob Agents Chemother. 1986;30(2):201-205. doi:10.1128/AAC.30.2.201.
33. Hosoya M, Balzarini J, Shigeta S, De Clercq E. Differential inhibitory effect of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob Agents Chemother. 1991;35(12):2515-2520. doi:10.1128/AAC.35.12.2515.
34. Shigeta S, Yamase T. Current status of anti-SARS agents. Antivir Chem Chemother. 2005;16(1):23-31. doi:10.1177/095632020501600103.
35. Hu D, Shao C, Guan W, Su Z, Sun J. Studies on the interactions of Ti-containing polyoxometalates (POMs) with SARS-CoV 3CLpro by molecular modeling. J Inorg Biochem. 2007;101(1):89-94. doi:10.1016/j.jinorgbio.2006.08.013.
36. Flütsch A, Schroeder T, Grütter MG, Patzke GR. HIV-1 protease inhibition potential of functionalized polyoxometalates. Bioorg Med Chem Lett. 2011;21(4):1162-1166. doi:10.1016/j.bmcl.2010.12.103.
37. Hosseini SM, Amini E, Tavassoti Kheiri M, Mehrbod P, Shahidi M, Zabihi E. Anti-influenza activity of a novel polyoxometalate derivative (POM-4960). Int J Mol Cell Med. 2012;1(1):21-29.
38. Zhang H, Qi Y, Ding Y, et al. Synthesis, characterization and biological activity of a niobium-substituted-heteropolytungstate on hepatitis B virus. Bioorg Med Chem Lett. 2012;22(4):1664-1669. doi:10.1016/j.bmcl.2011.12.115.
39. Enderle AG, Bosso M, Groß R, et al. Increased in vitro anti-HIV activity of Caffeinium-Functionalized polyoxometalates. ChemMedChem. 2021;16(17):2727-2730. doi:10.1002/cmdc.202100281.
40. Gil-Moles M, Türck S, Basu U, et al. Metallodrug Profiling against SARS-CoV-2 Target Proteins Identifies Highly Potent Inhibitors of the S/ACE2 interaction and the Papain-like protease PLpro. Chemistry. 2021;27(71):17928-17940. doi:10.1002/chem.202103258.
41. Shahabadi N, Mahdavi M, Zendehcheshm S. Can polyoxometalates (POMs) prevent of coronavirus 2019-nCoV cell entry? Interaction of POMs with TMPRSS2 and spike receptor domain complexed with ACE2 (ACE2-RBD): Virtual screening approaches. Inform Med Unlocked. 2022;29:100902. doi:10.1016/j.imu.2022.100902.
42. Dan K, Katoh N, Matsuoka T, Fujinami K. In vitro antimicrobial effects of virus block, which contains multiple polyoxometalate compounds, and hygienic effects of virus block-supplemented moist hand towels. Pharmacology. 2019;104(1-2):1-15. doi:10.1159/000500897.
43. Fujinami K, Dan K, Tanaka-Kagawa T, Kawamura I. Anti-aging effects of polyoxometalates on skin. Appl Sci. 2021;11(24):11948. doi:10.3390/app112411948.
44. Yamase T, Fukuda N, Tajima Y. Synergistic effect of polyoxotungstates in combination with β-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 1996;19(3):459-465. doi:10.1248/bpb.19.459.
45. Yamase T, Ohtaka K, Suzuki M. Structural characterization of spherical octadecavanadates encapsulating Cl and H2O. J Chem Soc, Dalton Trans. 1996;(3):283-289. doi:10.1039/dt9960000283.
46. Fukuda N, Yamase T, Tajima Y. Inhibitory effect of polyoxotungstates on the production of penicillin-binding proteins and β-lactamase against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 1999;22(5):463-470. doi:10.1248/bpb.22.463.
47. Fukuda N, Yamase T. In vitro antibacterial activity of vanadate and vanadyl compounds against Streptococcus pneumoniae. Biol Pharm Bull. 1997;20(8):927-930. doi:10.1248/bpb.20.927.
48. Inoue M, Suzuki T, Fujita Y, Oda M, Matsumoto N, Yamase T. Enhancement of antibacterial activity of β-lactam antibiotics by [P2W18O62]6-, [SiMo12O40]4-, and [PTi2W10O40]7- against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. J Inorg Biochem. 2006;100(7):1225-1233. doi:10.1016/j.jinorgbio.2006.02.004.
49. Yang FC, Wu KH, Lin WP, Hu MK. Preparation and antibacterial efficacy of bamboo charcoal/polyoxometalate biological protective material. Microporous Mesoporous Mater. 2009;118(1):467-472. doi:10.1016/j.micromeso.2008.09.026.
50. Bijelic A, Aureliano M, Rompel A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem Commun (Camb). 2018;54(10):1153-1169. doi:10.1039/c7cc07549a.
51. Gumerova NI, Al-Sayed E, Krivosudský L, Čipčić-Paljetak H, Verbanac D, Rompel A. Antibacterial activity of polyoxometalates against Moraxella catarrhalis. Front Chem. 2018;6:336. doi:10.3389/fchem.2018.00336.
52. Samart N, Arhouma Z, Kumar S, Murakami HA, Crick DC, Crans DC. Decavanadate inhibits mycobacterial growth more potently than other oxovanadates. Front Chem. 2018;6:519. doi:10.3389/fchem.2018.00519.
53. Zhang X, Zhang T, Guo S, et al. In vitro antifungal activity and mechanism of Ag3PW12O40 composites against Candida species. Molecules. 2020;25(24):6012. doi:10.3390/molecules25246012.
54. Zhang C, Liu R, Kong X, et al. Adaptive responses of a peroxidase-like polyoxometalate-based tri-assembly to bacterial microenvironment (BME) significantly improved the anti-bacterial effects. Int J Mol Sci. 2023;24(10):8858. doi:10.3390/ijms24108858.
55. Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates. Part 1. Potent antitumor activity of polyoxomolybdates in animal transplantable tumors and human cancer xenograft. Inorg Chim Acta. 1988;151(1):15-18. doi:10.1016/S0020-1693(00)83477-5.
56. Yamase T, Tomita K, Seto Y, Fujita H. Antitumor and antiviral activities of certain polyoxometalates. In: Ottenbrite RM, Chiellini E, eds. Polymers in Medicine: Biomedical and Pharmaceutical Applications. Lancaster, PA: Technomic Publishing Company Inc; 1992:187-212.
57. Lin CG, Chen W, Long DL, Cronin L, Song YF. Step-by-step covalent modification of Cr-templated Anderson-type polyoxometalates. Dalton Trans. 2014;43(23):8587-8590. doi:10.1039/c4dt00033a.
58. Fujita H, Fujita T, Sakurai T, Yamase T, Seto Y. Antitumor activity of new antitumor substance, polyoxomolybdate, against several human cancers in athymic nude mice. Tohoku J Exp Med. 1992;168(2):421-426. doi:10.1620/tjem.168.421.
59. Yamase T, Ozeki T, Motomura S. 183W NMR and x-ray crystallographic studies on the peroxo complexes of the Ti-substituted α-Keggin typed tungstophosphates. Bull Chem Soc Jpn. 1992;65(5):1453-1459. doi:10.1246/bcsj.65.1453.
60. Yamase T. Polyoxometalates for molecular devices: antitumor activity and luminescence. In: Pope MT, Müller A, eds. Topics in Molecular Organization and Engineering. Polyoxometallates:from Platonic Solids to Anti-Retroviral Activity. Dordrecht: Kluwer Publishers; 1994:337-358. doi:10.1007/978-94-011-0920-8_25.
61. Ogata A, Mitsui S, Yanagie H, et al. A novel antitumor agent, polyoxomolybdate induces apoptotic cell death in AsPC-1 human pancreatic cancer cells. Biomed Pharmacother. 2005;59(5):240-244. doi:10.1016/j.biopha.2004.11.008.
62. Mitsui S, Ogata A, Yanagie H, et al. Antitumor activity of polyoxomolybdate, [NH3Pri]6[Mo7O24]∙3H2O against human gastric cancer model. Biomed Pharmacother. 2006;60(7):353-358. doi:10.1016/j.biopha.2006.02.009.
63. Ogata A, Yanagie H, Ishikawa E, et al. Anti-tumoral effect of polyoxomolybdates: induction of apoptotic cell death and autophagy in in vitro and in vivo models. Br J Cancer. 2008;98(2):399-409. doi:10.1038/sj.bjc.6604133.
64. Sun X, Wu Y, Gao W, et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology. 2010;139(3):1030-1040. doi:10.1053/j.gastro.2010.05.007.
65. Compain JD, Mialane P, Marrot J, et al. Cite Share tetra- to dodecanuclear oxomolybdate complexes with functionalized bisphosphonate ligands: activity in killing tumor cells. Chemistry. 2010;16(46):13741-13748. doi:10.1002/chem.201001626.
66. El Moll H, Zhu W, Oldfield E, et al. Polyoxometalates functionalized by bisphosphonate ligands: synthesis, structural, magnetic, and spectroscopic characterizations and activity on tumor cell lines. Inorg Chem. 2012;51(14):7921-7931. doi:10.1021/ic3010079.
67. Zhang K, Zhao X, Liu J, et al. β-diketone-cobalt complexes inhibit DNA synthesis and induce S-phase arrest in rat C6 glioma cells. Oncol Lett. 2014;7(3):881-885. doi:10.3892/ol.2013.1772.
68. Zhao JW, Li HL, Ma X, Xie Z, Chen LJ, Zhu Y. Lanthanide-connecting and lone-electron-pair active trigonal-pyramidal-AsO3 inducing nanosized poly(polyoxotungstate) aggregates and their anticancer activities. Sci Rep. 2016;6:26406. doi:10.1038/srep26406.
69. Konkova AV, Savina IV, Evtushok DV, et al. Water-soluble Polyoxometal clusters of molybdenum (V) with Pyrazole and Triazole: Synthesis and Study of Cytotoxicity and Antiviral Activity. Molecules. 2023;28(24):8079. doi:10.3390/molecules28248079.
70. She S, Bian S, Huo R, et al. Degradable organically derivatized polyoxometalate with enhanced activity against glioblastoma cell line. Sci Rep. 2016;6:33529. doi:10.1038/srep33529.
71. Xia RY, Zhang RR, Jiang Z, Sun YJ, Liu J, Chen FH. K9(C4H4FN2O2)2nd(PW11O39)2·25H2O induces apoptosis in human lung cancer A549 cells. Oncol Lett. 2017;13(3):1348-1352. doi:10.3892/ol.2016.5543.
72. Sap A, Vandebroek L, Goovaerts V, Martens E, Proost P, Parac-Vogt TN. Highly selective and tunable protein hydrolysis by a polyoxometalate complex in surfactant solutions: A step toward the development of artificial metalloproteases for membrane proteins. ACS Omega. 2017;2(5):2026-2033. doi:10.1021/acsomega.7b00168.
73. Boulmier A, Feng X, OMS, Oms O, et al. Anticancer activity of polyoxometalate-bisphosphonate complexes: synthesis, characterization, in vitro and in vivo results. Inorg Chem. 2017;56(13):7558-7565. doi:10.1021/acs.inorgchem.7b01114.
74. Cao H, Li C, Qi W, et al. Synthesis, cytotoxicity and antitumour mechanism investigations of polyoxometalate doped silica nanospheres on breast cancer MCF-7 cells. PLOS ONE. 2017;12(7):e0181018. doi:10.1371/journal.pone.0181018.
75. Qi W, Zhang B, Qi Y, et al. The anti-proliferation activity and mechanism of action of K12[V18O42(H₂O)]∙6H₂O on breast cancer cell lines. Molecules. 2017;22(9):1535. doi:10.3390/molecules22091535.
76. Wang D, Wang Y, Zhang X, et al. A polyoxometalate-encapsulated metal–organic framework nanoplatform for synergistic photothermal-chemotherapy and anti-inflammation of ovarian cancer. Molecules. 2022;27(23):8350. doi:10.3390/molecules27238350.
77. Yang F, Chen Y, Xiao Y, et al. pH-sensitive molybdenum (Mo)-based polyoxometalate nanoclusters have therapeutic efficacy in inflammatory bowel disease by counteracting ferroptosis. Pharmacol Res. 2023;188:106645. doi:10.1016/j.phrs.2023.106645.
78. Carvalho F, Aureliano M. Polyoxometalates impact as anticancer agents. Int J Mol Sci. 2023;24(5):5043. doi:10.3390/ijms24055043.
79. Shi F, Chen Y, Dong C, et al. Ni/Mn-complex-tethered tetranuclear Polyoxovanadates: crystal structure and inhibitory activity on human hepatocellular carcinoma (HepG-2). Molecules. 2023;28(19):6843. doi:10.3390/molecules28196843.
80. Lin JW, Zhou Y, Xiao HP, et al. Antitumor effects of a Sb-rich polyoxometalate on non-small-cell lung cancer by inducing ferroptosis and apoptosis. Chem Sci. 2024;15(37):15367-15376. doi:10.1039/d4sc03856h.
81. Safar JG, Wille H, Geschwind MD, et al. Human prions and plasma lipoproteins. Proc Natl Acad Sci U S A. 2006;103(30):11312-11317. doi:10.1073/pnas.0604021103.
82. Oda M, Inoue M, Hino K, Nakamura Y, Yamase T. Enhancement effect of polyoxometalates on NGF-induced neurite-outgrowth of PC12 cells. Biol Pharm Bull. 2007;30(4):787-790. doi:10.1248/bpb.30.787.
83. Geng J, Li M, Ren J, Wang E, Qu X. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed Engl. 2011;50(18):4184-4188. doi:10.1002/anie.201007067.
84. Wille H, Shanmugam M, Murugesu M, et al. Surface charge of polyoxometalates modulates polymerization of the scrapie prion protein. Proc Natl Acad Sci U S A. 2009;106(10):3740-3745. doi:10.1073/pnas.0812770106.
85. Gao N, Sun H, Dong K, et al. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat Commun. 2014;5:3422. doi:10.1038/ncomms4422.
86. Levine DJ, Stöhr J, Falese LE, et al. Mechanism of scrapie prion precipitation with phosphotungstate anions. ACS Chem Biol. 2015;10(5):1269-1277. doi:10.1021/cb5006239.
87. Li M, Guan Y, Zhao A, Ren J, Qu X. Using Multifunctional Peptide conjugated au nanorods for Monitoring β-amyloid Aggregation and Chemo-Photothermal Treatment of Alzheimer’s disease. Theranostics. 2017;7(12):2996-3006. doi:10.7150/thno.18459.
88. Perxés Perich M, Palma-Florez S, Solé C, et al. Polyoxometalate-Decorated Gold Nanoparticles Inhibit beta-amyloid Aggregation and Cross the blood-brain Barrier in a physiological Model. Nanomaterials (Basel). 2023;13(19):2697. doi:10.3390/nano13192697.
89. Liu W, Mu W, Liu M, Zhang X, Cai H, Deng Y. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier. Nat Commun. 2014;5:3208. doi:10.1038/ncomms4208.
90. Zheng W, Yang L, Liu Y, et al. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis. Sci Technol Adv Mater. 2014;15(3):035010. doi:10.1088/1468-6996/15/3/035010.
91. Ni D, Jiang D, Valdovinos HF, et al. Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy. Nano Lett. 2017;17(5):3282-3289. doi:10.1021/acs.nanolett.7b00995.
92. Ni D, Jiang D, Kutyreff CJ, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 2018;9(1):5421. doi:10.1038/s41467-018-07890-8.
93. van Heusden C, Button B, Anderson WH, et al. Inhibition of ATP hydrolysis restores airway surface liquid production in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L356-L365. doi:10.1152/ajplung.00449.2019.
94. Brünle S, Eisinger ML, Poppe J, et al. Molybdate pumping into the molybdenum storage protein via an ATP-powered piercing mechanism. Proc Natl Acad Sci U S A. 2019;116(52):26497-26504. doi:10.1073/pnas.1913031116.
95. Pimpão C, da Silva IV, Mósca AF, et al. The Aquaporin-3-Inhibiting potential of polyoxotungstates. Int J Mol Sci. 2020;21(7):2467. doi:10.3390/ijms21072467.
96. Sun HB, Xu L, Wang ZX, et al. Polyoxometalate SbW9 regulates proliferation and apoptosis of NSCLC cells via PTEN-dependent AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2021;25(7):2825. doi:10.26355/eurrev_202104_25525.
97. Shi G, Jiang H, Yang F, et al. NIR-responsive molybdenum (Mo)-based nanoclusters enhance ROS scavenging for osteoarthritis therapy. Pharmacol Res. 2023;192:106768. doi:10.1016/j.phrs.2023.106768.
98. Dan K, Fujinami K, Sumitomo H, et al. Application of antiviral polyoxometalates to living environments-antiviral moist hand towels and stationery items. Appl Sci. 2020;10(22):8246. doi:10.3390/app10228246.