Do GLP-1 receptor agonists have a place in the treatment of people with type 1 diabetes?
Main Article Content
Abstract
The glucagon-like peptide-1 receptor agonists (GLP-1RAs) are established for the treatment of type 2 diabetes but are not currently recommended for the treatment of people with type 1 diabetes. However, during the last decade experience has been collected regarding addition of a GLP-1 RA to insulin in patients with type 1 diabetes, both from clinical trials and off-label use. Several retrospective as well as prospective observational studies without a control group have been published. Only very few placebo-controlled, randomized studies have been presented. The present narrative review assesses the efficacy and safety of the different GLP-1 RAs and the dual GLP-1/ glucose-dependent insulinotropic polypeptide (GIP) agonist tirzepatide on glycaemic control, body weight, dose of insulin and adverse events in people with type 1 diabetes.
The reduction in HbA1c has in most studies been absent or minimal (0-0.3% (3.3 mmol/mol)), partly explained by a concomitant significant reduction in dose of insulin. The reduction in body weight has been in the range of 2-7 kg. The most pronounced reduction in body weight and dose of insulin has been obtained with semaglutide and tirzepatide. In the two largest placebo-controlled, randomized studies infrequent increases in hyperglycaemia with ketosis and hypoglycaemia were registered. The only identified clinical variable impacting the effect of GLP-1 RAs on HbA1c and dose of insulin has been residual beta-cell function. Treatment with GLP-1 based therapy was associated with more gastrointestinal adverse events. The outcomes of the studies depended on the different GLP-1 RAs applied, the intervention time and the residual beta-cell function.
Thus, combination therapy is of interest in relation to weight loss in people with obesity and type 1 diabetes, and in newly diagnosed patients with residual beta-cell function aiming at prolonging remission period. More well-designed studies of high quality are of required to better identify the subgroups, who will benefit most from adding GLP-1 based therapy to insulin in people with type 1 diabetes.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care. 2007;30(3):707-712. doi:10.2337/dc06-1982
3. Madsbad S, Holst JJ. Cardiovascular effects of incretins: focus on glucagon-like peptide-1 receptor agonists. Cardiovasc Res. 2023;119(4):886-904. doi:10.1093/cvr/cvac112
4. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409-1439. doi:10.1152/physrev.00034.2006
5. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet (London, England). 2018;391(10138):2449-2462. doi:10.1016/S0140-6736(18)31320-5
6. Madsbad S. Prevalence of residual B cell function and its metabolic consequences in Type 1 (insulin-dependent) diabetes. Diabetologia. 1983;24(3):141-147. doi:10.1007/BF00250151
7. Madsbad S, Krarup T, Regeur L, Faber OK, Binder C. Insulin secretory reserve in insulin dependent patients at time of diagnosis and the first 180 days of insulin treatment. Acta Endocrinol (Copenh). 1980;95(3):359-363. doi:10.1530/acta.0.0950359
8. Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26(3):832-836. doi:10.2337/diacare.26.3.832
9. Wang L, Lovejoy NF, Faustman DL. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care. 2012;35(3):465-470. doi:10.2337/dc11-1236
10. Palmer JP, Fleming GA, Greenbaum CJ, et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21-22 October 2001. Diabetes. 2004;53(1):250-264. doi:10.2337/diabetes.53.1.250
11. Lachin JM, McGee P, Palmer JP. Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes. 2014;63(2):739-748. doi:10.2337/db13-0881
12. Dinneen S, Alzaid A, Turk D, Rizza R. Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia. 1995;38(3):337-343. doi:10.1007/BF00400639
13. Madsbad S, Hilsted J, Krarup T, et al. Hormonal, metabolic and cardiovascular responses to hypoglycaemia in Type 1 (insulin-dependent) diabetes with and without residual B cell function. Diabetologia. 1982;23(6):499-503. doi:10.1007/BF00254298
14. Skyler JS. Prevention and reversal of type 1 diabetes--past challenges and future opportunities. Diabetes Care. 2015;38(6):997-1007. doi:10.2337/dc15-0349
15. Zhang J, Tokui Y, Yamagata K, et al. Continuous stimulation of human glucagon-like peptide-1 (7-36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia. 2007;50(9):1900-1909. doi:10.1007/s00125-007-0737-6
16. Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival. Diabetes Metab. 2008;34 Suppl 2:S73-7. doi:10.1016/S1262-3636(08)73398-6
17. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47(5):806-815. doi:10.1007/s00125-004-1379-6
18. Kielgast U, Holst JJ, Madsbad S. Treatment of type 1 diabetic patients with glucagon-like peptide-1 (GLP-1) and GLP-1R agonists. Curr Diabetes Rev. 2009;5(4):266-275. doi:10.2174/157339909789804413
19. Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care. 1996;19(6):580-586. doi:10.2337/diacare.19.6.580
20. Kielgast U, Holst JJ, Madsbad S. Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual β-cell function. Diabetes. 2011;60(5):1599-1607. doi:10.2337/db10-1790
21. Varanasi A, Bellini N, Rawal D, et al. Liraglutide as additional treatment for type 1 diabetes. Eur J Endocrinol. 2011;165(1):77-84. doi:10.1530/EJE-11-0330
22. Kuhadiya ND, Malik R, Bellini NJ, et al. Liraglutide as additional treatment to insulin in obese patients with type 1 diabetes mellitus. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2013;19(6):963-967. doi:10.4158/EP13065.OR
23. Kielgast U, Krarup T, Holst JJ, Madsbad S. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual beta-cell function. Diabetes Care. 2011;34(7):1463-1468. doi:10.2337/dc11-0096
24. Frandsen CS, Dejgaard TF, Holst JJ, Andersen HU, Thorsteinsson B, Madsbad S. Twelve-Week Treatment With Liraglutide as Add-on to Insulin in Normal-Weight Patients With Poorly Controlled Type 1 Diabetes: A Randomized, Placebo-Controlled, Double-Blind Parallel Study. Diabetes Care. 2015;38(12):2250-2257. doi:10.2337/dc15-1037
25. Frandsen CS, Dejgaard TF, Andersen HU, et al. Liraglutide as adjunct to insulin treatment in type 1 diabetes does not interfere with glycaemic recovery or gastric emptying rate during hypoglycaemia: A randomized, placebo-controlled, double-blind, parallel-group study. Diabetes Obes Metab. 2017;19(6):773-782. doi:10.1111/dom.12830
26. Pieber TR, Deller S, Korsatko S, et al. Counter-regulatory hormone responses to hypoglycaemia in people with type 1 diabetes after 4 weeks of treatment with liraglutide adjunct to insulin: a randomized, placebo-controlled, double-blind, crossover trial. Diabetes Obes Metab. 2015;17(8):742-750. doi:10.1111/dom.12473
27. Dejgaard TF, Frandsen CS, Hansen TS, et al. Efficacy and safety of liraglutide for overweight adult patients with type 1 diabetes and insufficient glycaemic control (Lira-1): a randomised, double-blind, placebo-controlled trial. lancet Diabetes Endocrinol. 2016;4(3):221-232. doi:10.1016/S2213-8587(15)00436-2
28. Mathieu C, Zinman B, Hemmingsson JU, et al. Efficacy and Safety of Liraglutide Added to Insulin Treatment in Type 1 Diabetes: The ADJUNCT ONE Treat-To-Target Randomized Trial. Diabetes Care. 2016;39(10):1702-1710. doi:10.2337/dc16-0691
29. Ahrén B, Hirsch IB, Pieber TR, et al. Efficacy and Safety of Liraglutide Added to Capped Insulin Treatment in Subjects With Type 1 Diabetes: The ADJUNCT TWO Randomized Trial. Diabetes Care. 2016;39(10):1693-1701. doi:10.2337/dc16-0690
30. Dejgaard TF, von Scholten BJ, Christiansen E, et al. Efficacy and safety of liraglutide in type 1 diabetes by baseline characteristics in the ADJUNCT ONE and ADJUNCT TWO randomized controlled trials. Diabetes Obes Metab. 2021;23(12):2752-2762. doi:10.1111/dom.14532
31. Dejgaard TF, Schmidt S, Frandsen CS, et al. Liraglutide reduces hyperglycaemia and body weight in overweight, dysregulated insulin-pump-treated patients with type 1 diabetes: The Lira Pump trial-a randomized, double-blinded, placebo-controlled trial. Diabetes Obes Metab. 2020;22(4):492-500. doi:10.1111/dom.13911
32. Schmidt S, Frandsen CS, Dejgaard TF, et al. Liraglutide changes body composition and lowers added sugar intake in overweight persons with insulin pump-treated type 1 diabetes. Diabetes Obes Metab. 2022;24(2):212-220. doi:10.1111/dom.14567
33. von Herrath M, Bain SC, Bode B, et al. Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. lancet Diabetes Endocrinol. 2021;9(4):212-224. doi:10.1016/S2213-8587(21)00019-X
34. Van Belle TL, Nierkens S, Arens R, von Herrath MG. Interleukin-21 receptor-mediated signals control autoreactive T cell infiltration in pancreatic islets. Immunity. 2012;36(6):1060-1072. doi:10.1016/j.immuni.2012.04.005
35. Dejgaard TF, Frandsen CS, Kielgast U, et al. Liraglutide enhances insulin secretion and prolongs the remission period in adults with newly diagnosed type 1 diabetes (the NewLira study): A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2024; 26(11): 4905-4915 doi:10.1111/dom.15889
36. Rother KI, Spain LM, Wesley RA, et al. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care. 2009;32(12):2251-2257. doi:10.2337/dc09-0773
37. Raman VS, Mason KJ, Rodriguez LM, et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care. 2010;33(6):1294-1296. doi:10.2337/dc09-1959
38. Hari Kumar KVS, Shaikh A, Prusty P. Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study. Diabetes Res Clin Pract. 2013;100(2):e55-8. doi:10.1016/j.diabres.2013.01.020
39. Ghazi T, Rink L, Sherr JL, Herold KC. Acute metabolic effects of exenatide in patients with type 1 diabetes with and without residual insulin to oral and intravenous glucose challenges. Diabetes Care. 2014;37(1):210-216. doi:10.2337/dc13-1169
40. Sarkar G, Alattar M, Brown RJ, Quon MJ, Harlan DM, Rother KI. Exenatide treatment for 6 months improves insulin sensitivity in adults with type 1 diabetes. Diabetes Care. 2014;37(3):666-670. doi:10.2337/dc13-1473
41. Johansen NJ, Dejgaard TF, Lund A, et al. Efficacy and safety of meal-time administration of short-acting exenatide for glycaemic control in type 1 diabetes (MAG1C): a randomised, double-blind, placebo-controlled trial. lancet Diabetes Endocrinol. 2020;8(4):313-324. doi:10.1016/S2213-8587(20)30030-9
42. Johansen NJ, Dejgaard TF, Lund A, et al. Effect of short-acting exenatide administered three times daily on markers of cardiovascular disease in type 1 diabetes: A randomized double-blind placebo-controlled trial. Diabetes Obes Metab. 2020;22(9):1639-1647. doi:10.1111/dom.14078
43. Traina AN, Lull ME, Hui AC, Zahorian TM, Lyons-Patterson J. Once-weekly exenatide as adjunct treatment of type 1 diabetes mellitus in patients receiving continuous subcutaneous insulin infusion therapy. Can J diabetes. 2014;38(4):269-272. doi:10.1016/j.jcjd.2013.10.006
44. Pozzilli P, Bosi E, Cirkel D, et al. Randomized 52-week Phase 2 Trial of Albiglutide Versus Placebo in Adult Patients With Newly Diagnosed Type 1 Diabetes. J Clin Endocrinol Metab. 2020;105(6). doi:10.1210/clinem/dgaa149
45. Dandona P, Chaudhuri A, Ghanim H. More on Semaglutide in Early Type 1 Diabetes. Reply. N Engl J Med. 2024;390(3):292. doi:10.1056/NEJMc2311608
46. Grassi BA, Teresa Onetto M, Sánchez C, Tapia N, Mena F. Effect of low dose Semaglutide in people with Type 1 Diabetes and excess weight. Diabetes Res Clin Pract. 2024;209:111593. doi:10.1016/j.diabres.2024.111593
47. Rabbani SA, El-Tanani M, Matalka II, et al. Tirzepatide: unveiling a new dawn in dual-targeted diabetes and obesity management. Expert Rev Endocrinol Metab. Published online August 2024:1-19. doi:10.1080/17446651.2024.2395540
48. Karakus KE, Klein MP, Akturk HK, Shah VN. Changes in Basal and Bolus Insulin Requirements with Tirzepatide as an Adjunctive Therapy in Adults with Type 1 Diabetes Using Tandem Control-IQ. Diabetes Ther Res Treat Educ diabetes Relat Disord. 2024;15(7):1647-1655. doi:10.1007/s13300-024-01592-9
49. Akturk HK, Dong F, Snell-Bergeon JK, Karakus KE, Shah VN. Efficacy and Safety of Tirzepatide in Adults With Type 1 Diabetes: A Proof of Concept Observational Study. J Diabetes Sci Technol. Published online February 2024:19322968231223990. doi:10.1177/19322968231223991
50. Lind M, Svensson AM, Kosiborod M, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972-1982. doi:10.1056/NEJMoa1408214
51. Perkovic V, Tuttle KR, Rossing P, et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N Engl J Med. 2024;391(2):109-121. doi:10.1056/NEJMoa2403347