Role of IL-18 in Asthma
Main Article Content
Abstract
Asthma is a common heterogeneous disorder characterized by chronic airway inflammation, remolding and hyperresponsiveness. Although substantial advance has been achieved in understanding its complex pathogenesis, which involves genetic factors, environmental exposures, and immune system imbalances, the effective clinical therapeutics of asthma remains challenging. IL-18, a pleiotropic cytokine of IL-1 superfamily produced mainly by monocyte-macrophage system, is an imperative participant in the pathology of asthma through interacting with IL-18R, and is likely to be the potential targets for the diagnosis and therapeutics of asthma. In this review, we addressed briefly the phenotypes and endotypes of asthma. Then we introduced the regulation mechanisms of the IL-18 production, and summarized the roles of IL-18 in the pathogenesis of different asthma endotypes, in particular emphasizing the roles of IL-18 alone and IL-18 in synergy with other cytokines. Furthermore, we highlighted the effects of IL-18 on airway pathological characteristics and disorder severity of asthma. Finally, we discussed the future research directions and challenges based on IL-18 therapy, which is expected to provide novel ideas for the precise treatment of asthma.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Asthma GIf. 2024 GINA Main Report. Oct 25, 2024, Accessed Jul 12, 2024, https://ginasthma.org/2024-report/
3. Sharma BS, Shekhawat DS, Sharma P, Meena C, Mohan H. Acute Respiratory Distress in Children: Croup and Acute Asthma. Indian J Pediatr. 2015;82(7):629-36. doi:10.1007/s12098-014-1559-4
4. Tang HHF, Teo SM, Sly PD, Holt PG, Inouye M. The intersect of genetics, environment, and microbiota in asthma-perspectives and challenges. J Allergy Clin Immunol. 2021;147(3):781-793. doi:10.1016/j.jaci.2020.08.026
5. Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. Front Immunol. 2024;15:1352946. doi:10.3389/fimmu.2024.1352946
6. Wang X, Kong Y, Zheng B, et al. Tissue-resident innate lymphoid cells in asthma. J Physiol. 2023;601(18):3995-4012. doi:10.1113/jp284686
7. Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol. 2023;14:1149203. doi:10.3389/fimmu.2023.1149203
8. Boonpiyathad T, Sözener ZC, Akdis M, Akdis CA. The role of Treg cell subsets in allergic disease. Asian Pac J Allergy Immunol. 2020;38(3):139-149. doi:10.12932/ap-030220-0754
9. Gutiérrez-Vera C, García-Betancourt R, Palacios PA, et al. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol. 2024;15:1364774. doi:10.3389/fimmu.2024.1364774
10. Dinarello CA. Interleukin-18. Methods. 1999;19(1):121-32. doi:10.1006/meth.1999.0837
11. Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019;56(2):219-233. doi:10.1007/s12016-018-8712-1
12. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469-1485. doi:10.1016/j.cell.2021.02.016
13. Wang J, Zhan M, Zhai Y, et al. Allergens induce upregulated IL-18 and IL-18Rα expression in blood Th2 and Th17 cells of patients with allergic asthma. Clin Exp Immunol. 2024;217(1):31-44. doi:10.1093/cei/uxae022
14. Wang Z, Liu Z, Wang L, et al. Altered expression of IL-18 binding protein and IL-18 receptor in basophils and mast cells of asthma patients. Scand J Immunol. 2018;87(5):e12658. doi:10.1111/sji.12658
15. Zhang H, Wang J, Wang L, Xie H, Chen L, He S. Role of IL-18 in atopic asthma is determined by balance of IL-18/IL-18BP/IL-18R. J Cell Mol Med. 2018;22(1):354-373. doi:10.1111/jcmm.13323
16. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386(6625):619-23. doi:10.1038/386619a0
17. Netea MG, van de Veerdonk FL, Kullberg BJ, Van der Meer JW, Joosten LA. The role of NLRs and TLRs in the activation of the inflammasome. Expert Opin Biol Ther. 2008;8(12):1867-72. doi:10.1517/14712590802494212
18. Triantafilou K, Ward CJK, Czubala M, et al. Differential recognition of HIV-stimulated IL-1β and IL-18 secretion through NLR and NAIP signalling in monocyte-derived macrophages. PLoS Pathog. 2021;17(4):e1009417. doi:10.1371/journal.ppat.1009417
19. Babamale AO, Chen ST. Nod-like Receptors: Critical Intracellular Sensors for Host Protection and Cell Death in Microbial and Parasitic Infections. Int J Mol Sci. 2021;22(21)doi:10.3390/ijms222111398
20. Borges PV, Moret KH, Raghavendra NM, et al. Protective effect of gedunin on TLR-mediated inflammation by modulation of inflammasome activation and cytokine production: Evidence of a multitarget compound. Pharmacol Res. 2017;115:65-77. doi:10.1016/j.phrs.2016.09.015
21. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-20. doi:10.1016/j.cell.2010.01.022
22. Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol. 2009;21(4):242-53. doi:10.1016/j.smim.2009.06.005
23. Yang J, Zhang M, Luo Y, et al. Protopine ameliorates OVA-induced asthma through modulatingTLR4/ MyD88/NF-κB pathway and NLRP3 inflammasome-mediated pyroptosis. Phytomedicine. 2024;126:155410. doi:10.1016/j.phymed.2024.155410
24. Yang Z, Li X, Wei L, et al. Involucrasin B suppresses airway inflammation in obese asthma by inhibiting the TLR4-NF-κB-NLRP3 pathway. Phytomedicine. 2024;132:155850. doi:10.1016/j.phymed.2024.155850
25. Li M, Wang C, Xu WT, Zhong X. Sodium houttuyfonate plays a protective role in the asthmatic airway by alleviating the NLRP3-related pyroptosis and Th1/Th2 immune imbalance. Mol Immunol. 2023;160:103-111. doi:10.1016/j.molimm.2023.06.013
26. Lu HF, Zhou YC, Hu TY, et al. Unraveling the role of NLRP3 inflammasome in allergic inflammation: implications for novel therapies. Front Immunol. 2024;15:1435892. doi:10.3389/fimmu.2024.1435892
27. Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in Health and Disease. Int J Mol Sci. 2019;20(3)doi:10.3390/ijms20030649
28. Sugimoto T, Ishikawa Y, Yoshimoto T, Hayashi N, Fujimoto J, Nakanishi K. Interleukin 18 acts on memory T helper cells type 1 to induce airway inflammation and hyperresponsiveness in a naive host mouse. J Exp Med. 2004;199(4):535-45. doi:10.1084/jem.20031368
29. Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605. doi:10.1111/all.14318
30. Chen L, Hou W, Liu F, et al. Blockade of NLRP3/Caspase-1/IL-1β Regulated Th17/Treg Immune Imbalance and Attenuated the Neutrophilic Airway Inflammation in an Ovalbumin-Induced Murine Model of Asthma. J Immunol Res. 2022;2022:9444227. doi:10.1155/2022/9444227
31. Mills KH, Dungan LS, Jones SA, Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol. 2013;93(4):489-97. doi:10.1189/jlb.1012543
32. Revu S, Wu J, Henkel M, et al. IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Rep. 2018;22(10):2642-2653. doi:10.1016/j.celrep.2018.02.044
33. Ito T, Hirose K, Nakajima H. Bidirectional roles of IL-22 in the pathogenesis of allergic airway inflammation. Allergol Int. 2019;68(1):4-8. doi:10.1016/j.alit.2018.10.002
34. French AR, Holroyd EB, Yang L, Kim S, Yokoyama WM. IL-18 acts synergistically with IL-15 in stimulating natural killer cell proliferation. Cytokine. 2006;35(5-6):229-34. doi:10.1016/j.cyto.2006.08.006
35. Lepretre F, Gras D, Chanez P, Duez C. Natural killer cells in the lung: potential role in asthma and virus-induced exacerbation? Eur Respir Rev. 2023;32(169)doi:10.1183/16000617.0036-2023
36. Terrén I, Sandá V, Amarilla-Irusta A, et al. IL-12/15/18-induced cell death and mitochondrial dynamics of human NK cells. Front Immunol. 2023;14:1211839. doi:10.3389/fimmu.2023.1211839
37. Leung BP, Culshaw S, Gracie JA, et al. A role for IL-18 in neutrophil activation. J Immunol. 2001;167(5):2879-86. doi:10.4049/jimmunol.167.5.2879
38. Brabcová E, Kolesár L, Thorburn E, Stříž I. Chemokines induced in human respiratory epithelial cells by IL-1 family of cytokines. Folia Biol (Praha). 2014;60(4):180-6.
39. Chow JY, Wong CK, Cheung PF, Lam CW. Intracellular signaling mechanisms regulating the activation of human eosinophils by the novel Th2 cytokine IL-33: implications for allergic inflammation. Cell Mol Immunol. 2010;7(1):26-34. doi:10.1038/cmi.2009.106
40. Wang W, Tanaka T, Okamura H, et al. Interleukin-18 enhances the production of interleukin-8 by eosinophils. Eur J Immunol. 2001;31(4):1010-6. doi:10.1002/1521-4141(200104)31:4<1010::aid-immu1010>3.0.co;2-8
41. Hata H, Yoshimoto T, Hayashi N, Hada T, Nakanishi K. IL-18 together with anti-CD3 antibody induces human Th1 cells to produce Th1- and Th2-cytokines and IL-8. Int Immunol. 2004;16(12):1733-9. doi:10.1093/intimm/dxh174
42. Yoshimoto T, Nakanishi K. Roles of IL-18 in basophils and mast cells. Allergol Int. 2006;55(2):105-13. doi:10.2332/allergolint.55.105
43. Yamagata S, Tomita K, Sato R, Niwa A, Higashino H, Tohda Y. Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model. Clin Exp Immunol. 2008;154(3):295-304. doi:10.1111/j.1365-2249.2008.03772.x
44. Thomas LH, Wickremasinghe MI, Friedland JS. IL-1 beta stimulates divergent upper and lower airway epithelial cell CCL5 secretion. Clin Immunol. 2007;122(2):229-38. doi:10.1016/j.clim.2006.10.004
45. Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy. 2022;15:595-610. doi:10.2147/jaa.S267222
46. Kaur D, Chachi L, Gomez E, Sylvius N, Brightling CE. Interleukin-18, IL-18 binding protein and IL-18 receptor expression in asthma: a hypothesis showing IL-18 promotes epithelial cell differentiation. Clin Transl Immunology. 2021;10(6):e1301. doi:10.1002/cti2.1301
47. Kang MJ, Choi JM, Kim BH, et al. IL-18 induces emphysema and airway and vascular remodeling via IFN-γ, IL-17A, and IL-13. Am J Respir Crit Care Med. 2012;185(11):1205-17. doi:10.1164/rccm.201108-1545OC
48. Wang F, Guan M, Wei L, Yan H. IL‑18 promotes the secretion of matrix metalloproteinases in human periodontal ligament fibroblasts by activating NF‑κB signaling. Mol Med Rep. 2019;19(1):703-710. doi:10.3892/mmr.2018.9697
49. Bajbouj K, Ramakrishnan RK, Hamid Q. Role of Matrix Metalloproteinases in Angiogenesis and Its Implications in Asthma. J Immunol Res. 2021;2021:6645072. doi:10.1155/2021/6645072
50. Bradding P, Porsbjerg C, Côté A, Dahlén SE, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol. 2024;153(5):1181-1193. doi:10.1016/j.jaci.2024.02.011
51. Vignola AM, Gagliardo R, Siena A, et al. Airway remodeling in the pathogenesis of asthma. Curr Allergy Asthma Rep. 2001;1(2):108-15. doi:10.1007/s11882-001-0077-4
52. Ke Q, Yang L, Cui Q, et al. Ciprofibrate attenuates airway remodeling in cigarette smoke-exposed rats. Respir Physiol Neurobiol. 2020;271:103290. doi:10.1016/j.resp.2019.103290
53. Ishikawa Y, Yoshimoto T, Nakanishi K. Contribution of IL-18-induced innate T cell activation to airway inflammation with mucus hypersecretion and airway hyperresponsiveness. Int Immunol. 2006;18(6):847-55. doi:10.1093/intimm/dxl021
54. Yoshimoto T, Tsutsui H, Tominaga K, et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci U S A. 1999;96(24):13962-6. doi:10.1073/pnas.96.24.13962
55. Chen LX, Xu CM, Gao F, et al. Associations of IL-18 and IL-9 expressions and gene polymorphisms with asthma. Eur Rev Med Pharmacol Sci. 2020;24(12):6931-6938. doi:10.26355/eurrev_202006_21684
56. El-Husseini ZW, Vonk JM, van den Berge M, Gosens R, Koppelman GH. Association of asthma genetic variants with asthma-associated traits reveals molecular pathways of eosinophilic asthma. Clin Transl Allergy. 2023;13(4):e12239. doi:10.1002/clt2.12239
57. Harada M, Obara K, Hirota T, et al. A functional polymorphism in IL-18 is associated with severity of bronchial asthma. Am J Respir Crit Care Med. 2009;180(11):1048-55. doi:10.1164/rccm.200905-0652OC
58. Camiolo MJ, Zhou X, Wei Q, et al. Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight. 2021;6(21)doi:10.1172/jci.insight.149945
59. Wang J, Zhang H, Zheng W, et al. Correlation of IL-18 with Tryptase in Atopic Asthma and Induction of Mast Cell Accumulation by IL-18. Mediators Inflamm. 2016;2016:4743176. doi:10.1155/2016/4743176
60. Hossny EM, El-Sayed SS, El-Hadidi ES, Moussa SR. Serum interleukin-18 expression in children with bronchial asthma. World Allergy Organ J. 2009;2(5):63-8. doi:10.1097/WOX.0b013e3181a33649
61. Oda H, Kawayama T, Imaoka H, et al. Interleukin-18 expression, CD8(+) T cells, and eosinophils in lungs of nonsmokers with fatal asthma. Ann Allergy Asthma Immunol. 2014;112(1):23-28.e1. doi:10.1016/j.anai.2013.09.004
62. Ezzat DA, Morgan DS, Mohamed RA, Mohamed AF. Genetic association of interleukin 18 (-607C/A, rs1946518) single nucleotide polymorphism with asthmatic children, disease severity and total IgE serum level. Cent Eur J Immunol. 2019;44(3):285-291. doi:10.5114/ceji.2019.89603
63. Lachheb J, Chelbi H, Ammar J, Hamzaoui K, Hamzaoui A. Promoter polymorphism of the IL-18 gene is associated with atopic asthma in Tunisian children. Int J Immunogenet. 2008;35(1):63-8. doi:10.1111/j.1744-313X.2007.00738.x
64. Shaaban HH, Mohy AM, Abdel-Razek AR, Wahab AA. Interleukin-18 -607C/A gene polymorphism in Egyptian asthmatic children. Mol Diagn Ther. 2014;18(4):427-34. doi:10.1007/s40291-014-0097-0
65. Tanaka H, Miyazaki N, Oashi K, et al. IL-18 might reflect disease activity in mild and moderate asthma exacerbation. J Allergy Clin Immunol. 2001;107(2):331-6. doi:10.1067/mai.2001.112275
66. Watanabe S, Suzukawa M, Tashimo H, et al. Low Serum IL-18 Levels May Predict the Effectiveness of Dupilumab in Severe Asthma. Intern Med. 2024;63(2):179-187. doi:10.2169/internalmedicine.1808-23
67. Mukherjee M, Bulir DC, Radford K, et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J Allergy Clin Immunol. 2018;141(4):1269-1279. doi:10.1016/j.jaci.2017.06.033
68. Rovina N, Dima E, Bakakos P, et al. Low interleukin (IL)-18 levels in sputum supernatants of patients with severe refractory asthma. Respir Med. 2015;109(5):580-7. doi:10.1016/j.rmed.2015.03.002
69. Morimoto C, Matsumoto H, Tajiri T, et al. High serum free IL-18 is associated with decreased omalizumab efficacy: findings from a 2-year omalizumab treatment study. J Asthma. 2021;58(9):1133-1142. doi:10.1080/02770903.2020.1766061
70. Wild JS, Sigounas A, Sur N, et al. IFN-gamma-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J Immunol. 2000;164(5):2701-10. doi:10.4049/jimmunol.164.5.2701
71. Yu CX, Shi ZA, Ou GC, et al. Maresin-2 alleviates allergic airway inflammation in mice by inhibiting the activation of NLRP3 inflammasome, Th2 type immune response and oxidative stress. Mol Immunol. 2022;146:78-86. doi:10.1016/j.molimm.2022.03.118
72. Fu Y, Huang FY, Dai SZ, et al. Penicilazaphilone C alleviates allergic airway inflammation and improves the immune microenvironment by hindering the NLRP3 inflammasome. Biomed Pharmacother. 2024;175:116788. doi:10.1016/j.biopha.2024.116788
73. Kodama T, Matsuyama T, Kuribayashi K, et al. IL-18 deficiency selectively enhances allergen-induced eosinophilia in mice. J Allergy Clin Immunol. 2000;105(1 Pt 1):45-53. doi:10.1016/s0091-6749(00)90176-3
74. Wang X, Wang L, Wen X, Zhang L, Jiang X, He G. Interleukin-18 and IL-18BP in inflammatory dermatological diseases. Front Immunol. 2023;14:955369. doi:10.3389/fimmu.2023.955369
75. Kim S, Yu H, Azam T, Dinarello CA. Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application. Immune Netw. 2024;24(1):e1. doi:10.4110/in.2024.24.e1