A REVIEW ON EPIDEMIOLOGICAL AND PATHOPHYSOLOGICAL DETERMINANTS OF LONG COVID

Main Article Content

Soheli Chowdhury Majeedul H. Chowdhury

Abstract

Long COVID is a condition that emerges following SARS-CoV-2 infection and persists for at least three months, with recurrent symptoms of varying intensity. Approximately 10% of COVID-19 patients do not experience full recovery from the initial infection. Women and individuals who experienced severe COVID-19 are at a higher risk of developing Long COVID, as are certain ethnic groups and adults aged 50–59, who show higher prevalence rates. Initially, the virus replicates primarily in the upper respiratory tract, where there is high expression of angiotensin-converting enzyme-2. As infection progresses, it can spread to other organs. Many Long COVID symptoms appear to result from an overactive immune response rather than direct viral effects on tissues. Some studies suggest that dormant viruses may become reactivated, potentially contributing to increased autoantibody levels and worsening disease severity. Proposed mechanisms in Long COVID pathophysiology include dysfunctional mitochondrial metabolism, prion involvement, amyloid formation, and genetic factors. This review synthesizes current knowledge on the characteristics of long COVID, drawing on an analysis of available online literature.

Keywords: Long COVID, SARS-CoV-2, ACE-2, Antibody, Autoimmunity

Article Details

How to Cite
CHOWDHURY, Soheli; CHOWDHURY, Majeedul H.. A REVIEW ON EPIDEMIOLOGICAL AND PATHOPHYSOLOGICAL DETERMINANTS OF LONG COVID. Medical Research Archives, [S.l.], v. 12, n. 12, dec. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6127>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v12i12.6127.
Section
Review Articles

References

1. Mayo Clinic Report. Long COVID: Lasting effects of COVID-19. www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/coronavirus-long-term-effects/art-20490351

2. Ford ND, Agedew A, Dalton AF, Singleton J, Perrine CG, Saydahet S. Notes from the Field: Long COVID Prevalence Among Adults - United States, 2022. MMWR Morb Mortal Wkly Rep. 2024; 73(6):135. doi: 10.15585/mmwr.mm7306a4.

3. Cogliandro V, Bonfanti P. Long COVID: lights and shadows on the clinical characterization of this emerging pathology. New Microbiol. 2024; 47(1): 15-27.

4. Walker AJ, MacKenna B, Inglesby P, et al. Clinical coding of long COVID in English primary care: a federated analysis of 58 million patient records in situ using OpenSAFELY. Br J Gen Pract. 2021;71(712):e806-e814.
doi: 10.3399/BJGP.2021.0301.

5. O'Mahoney LL, Routen A, Gillies C, et al. The prevalence and long-term health effects of Long COVID among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine. 2022;55:101762. doi:10.1016/j.eclinm.2022.101762

6. Davis, HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023 Mar;21 (3):133-146. doi: 10.1038/s41579-022-00846-

7. Huerne K, Filion KB, Grad R, Ernst P, Gershon AS, Eisenberg MJ. Epidemiological and clinical perspectives of long COVID syndrome. Am J Med Open. Jun:9:100033. doi: 10.1016/j.ajmo.2023.10 0033.

8. Hanson SW, Abbafati C, Aerts JG. et al (2022). A global systematic analysis of the occurrence, severity, and recovery pattern of long COVID in 2020 and 2021. medRxiv [Preprint]. 2022 May 27:2022. 05.26.22275532.
doi: 10.1101/2022.05.26.22275532

9. CDC/National center for health statistics. Nearly One in Five American Adults Who Have Had
COVID-19 Still Have “Long COVID”.
https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/20220622.htm

10. Williamson, Anne E., Florence Tydeman, Alec Miners, Kate Pyper, and Adrian R. Martineau. "Short-term and long-term impacts of COVID-19 on economic vulnerability: a population-based longitudinal study (COVIDENCE UK)." BMJ Open. 2022; 12 (8): e065083. doi: 10.1136/bmjopen-2022-065083.

11. Ahmad FB, Anderson RN, Cisewski JA, Sutton PD. Identification of Deaths With Post-acute Sequelae of COVID-19 From Death Certificate Literal Text: United States, January 1, 2020–June 30, 2022. NVSS. Vital Statistics Rapid Release. 2022. Report No. 25.

12. Subramanian A, Nirantharakumar K, Hughes S, Myles P, et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med. 22022; 8(8): 1706-1714. doi: 10.1038/s41591-022-01909-w

13. Yang X, Hou C, Shen Y, et al. (2022). Two-Year Health Outcomes in Hospitalized COVID-19 Survivors in China. JAMA Netw Open. 2022; 5(9): e2231790. doi: 10.1001/jamanetworkopen.2022.31790

14. Wahlgren C, Forsberg G., Divanoglo A. et al.Two-year follow-up of patients with post-COVID-19 condition in Sweden: a prospective cohort study. Lancet Reg Health Eur. 2023; 28: doi: 10.1016/j.la nepe.2023.100595

15. Ballouz T, Menges D., Kaufmann M. et al.(2023). Post COVID-19 condition after Wildtype, Delta, and Omicron SARS-CoV-2 infection and prior vaccination: pooled analysis of two population-based cohorts. PLoS One. 2023;18(2): e0281429. https://doi.org/10.1371/journal.pone.0281429

16. Antonelli M, Pujol JC, Spector TD, Ourselin S, Steves CJ. (2022). Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet. 2022; 399(10343): 2263-2264. doi: 10.1016/S0140-6736(22)00941-2

17. Fernández-de-Las-Peñas C, Notarte KI, Peligro PJ et al. Long-COVID symptoms in individuals infected with different SARS-CoV-2 variants of concern: a systematic review of the literature. Viruses. 2022; 14(12): 2629. doi: 10.3390/v14122629

18. Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022; 375 (6578): 267. doi: 10.1126/science.abm2052.

19. Haffke M, Freitag H, Rudolf G. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J Transl Med. 2022; 20(1), 138. doi: 10.1186/s12967-022-03346-2

20. Nunes JM, Kruger A, Proal A, Kell DB, Pretorius E. The occurrence of hyperactivated platelets and fibrinaloid microclots in myalgic encephalomyelitis/chronic fatigue syndrome (ME/ CFS) Pharmaceuticals. 2022;15: 931. doi: 10.3390/ ph15080931

21. Gorący A, Rosik J, Szostak B, Ustianowski L. Ustianowska K , Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses. 2022;14(5):1092. doi: 10.3390/v14051092

22. Frere JJ. Serafini RA, Pryce KD, et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci Transl Med. 28;14(664): doi: 10.1126/scitranslmed.abq3059.

23. Ziegler MF. Agencia FAPESP: 2013.
https://agencia.fapesp.br/long-covid-is-linked-to-persistent-damage-to-mitochondria-the-powerhouses-of-our-cells/50440

24. Kim S-J, Syed GH, Khan M. E, et al.. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. USA. 2014;111 (17):6413. doi: 10.1073/pnas.1321114111.

25. Shi CS, Qi HY, Boularan C, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014;193 (6):3080.
doi: 10.4049/jimmunol.1303196.

26. Chen T-H, Chang C-J, Hung P-H. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci. 2023.28; 24(9):8034. doi: 10.3390/ijms24098034

27. Nardacci R, Colavita F, Castilletti C, et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis. 2021;12(3):263. doi: 10.1038/s41419-021-03527-9

28. Díaz-Resendiz KJG, Benitez-Trinidad AB, Covantes-Rosales EC. et al. Loss of mitochondrial membrane potential (ΔΨm) in leucocytes as post-COVID-19 sequelae. J. Leukoc. Biol. 2022;112 (1): 23–29. doi: 10.1002/JLB.3MA0322-279RRR

29. Guntur VP, Nemkov T, de Boeret E. et al. Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites. 2022;12:1026. doi: 10.3390/metabo12111026.

30. Appelman B, Charlton BT, Goulding, RP. et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun. 2024:15(1): 17. doi: 10.1038/s41467-023-44432-3.

31. Zhang Y, Sun H, Pei R, et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov. 2021.7 (1): 31. doi: 10.1038/s41421-021-00268-z.

32. Takeshita F, Kobiyama K, Miyawaki A, Jounai N, Okuda K. The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy. 2008; 4 (1): 67. doi: 10.4161/auto.5055

33. Mohamud Y, Xue YC, Liu H, et al. The papain-like protease of coronaviruses cleaves ULK1 to disrupt host autophagy. Biochem Biophys Res Commun. 2021. 12;540:75 doi: 10.1016/j.bbrc.2020.12.091.

34. Gassen NC, Papies J, Bajaj T, et al. SARS-CoV-2-Mediated Dysregulation of Metabolism and Autophagy Uncovers Host-Targeting Antivirals. Nat Commun. 2021;12 (1):3818. doi: 10.1038/s41467-021-24007-w.

35. Scudellari M. How the coronavirus infects cells - and why Delta is so dangerous. Nature. 2021; 595(7869): 640. doi: 10.1038/d41586-021-02039-y.

36. Rosenbaum M. Long Covid, can animals provide the answers?
https://www.understandinganimalresearch.org.uk/news/long-covid-can-animals-provide-the-answers

37. Grand, RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol. 2023.104(11):001918. doi: 10.1099/jgv.0.001918.

38. Basaran. M, Hazar M, Aydın. M. Effects of COVID-19 Disease on DNA Damage, Oxidative Stress and Immune Responses. Toxics. 2023;11 (4):386. doi: 10.3390/toxics11040386

39. Stefano GB, Büttiker P, Weissenberger S. et al. Potential Prion Involvement in Long COVID-19 neuropathology, including behavior. Cell Mol Neurobiol. 2023; 43(6): 2621. doi: 10.1007/s10571-023-01342-8

40. Nyström S, Hammarström P. Amyloidogenesis of SARS-CoV-2 Spike Protein. Journal of the American Chemical Society. 2022; 144 (20): 8945-8950. doi: 10.1021/jacs.2c03925

41. Taylor K, Pearson M, Das S, Sardell J, Chocian K, Gardner S. Genetic risk factors for severe and fatigue dominant long COVID and commonalities with ME/CFS identified by combinatorial analysis. J Transl Med. 2023;21(1), 775. doi.org/10.1186/s12967-023-04588-4).

42. Augusto DG, Murdolo LD, Chatzileontiadou DS. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature. 2023; 620(7972):128-136. doi: 10.1038/s41586-023-06331-x.

43. Klein J, Wood J, Jaycox J. et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv. 2022;10.1101/2022.08.09.222 78592.

44. Glynne P, Tahmasebi N, Gant V, Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med. 2022; 70: 61–67. doi: 10.1136/jim-2021-002051.

45. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022; 23:210–216. doi: 10.1038/s41590-021-01113-x.

46. Hu F, Chen F, Ou Z, et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol Immunol. 2020;17 (11):1119–1125. doi: 10.1038/s41423-020-00550-2.

47. Sacchi MC, Tamiazzo S, Stobbione P. SARS‐CoV‐2 infection as a trigger of autoimmune response. Clin Transl Sci. 2021;14(3):898‐907. doi: 10.1111/cts.12953

48. Chang SE, Feng A, We, hao Meng WH et al. New‐onset IgG autoantibodies in hospitalized patients with COVID‐19. Nat Commun. 2021;12 (1):5417. doi: 10.1038/s41467-021-25509-3

49. Son K, Jamil R, Chowdhury A, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long-COVID symptoms. Eur Respir J. 2022; doi: 10.1183/13993003.00970-2022

50. Arthur J, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021; 16(9): e0257016. doi: 10.1371/journal.pone.0257016

51. Bourgonje R, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020; 251(3): 228. doi: 10.1002/path.5471

52. Sarzi-Puttini, P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol . 2020;38(2): 337-342. doi: 10.55563/clinexprheumatol/xcdary

53. Scaglioni V, Soriano ER. Are superantigens the cause of cytokine storm and viral sepsis in severe COVID-19? Observations and hypothesis. Scand J Immunol. 2020;92(6). e12944 doi: 10.1111/sji.12944.

54. Turner S, Khan MA, Putrino D, Woodcock A. Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023. 34(6):321. doi: 10.1016/j.tem.2023.03.002

55. Amiral J, Busch MH, Timmermans SA, Reutelingsperger CP, & van Paassen P. Development of IgG, IgM, and IgA autoantibodies against angiotensin converting enzyme 2 in patients with COVID-19. J Appl Lab Med. 2022; 7(1): 382-386. doi: 10.1093/jalm/jfab065

56. Amiral J, Seghatchian J. Autoimmune complications of COVID-19 and potential consequences for long-lasting disease syndromes. Transfus Apher Sci. 2023; 62(1): 103625. https://doi.org/10.1016/j.transci.2022.103625

57. Elrashdy F, Tambuwala MM, Hassan S, et al. (2021). Autoimmunity roots of the thrombotic events after COVID-19 vaccination. Autoimmun Rev. 2021; 20(11): 102941. doi: 10.1016/j.autrev.2021.102941

58. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021; 12: 23:12:698169. doi: 10.3389/fmicb.2021.698169.

59. Kumata R. Ito J, Takahashi K, Suzuki T, Sato K. A tissue level atlas of the healthy human virome. BMC Biol. 2020;18 (1):55. doi: 10.1186/s12915-020-00785-5.

60. Chen C, Amelia A, Ashdown GW, Mueller I, Coussens AK, Eriksson EM. Risk surveillance and mitigation: autoantibodies as triggers and inhibitors of severe reactions to SARS-CoV-2 infection. Mol Med. 2021; 27(1):160. doi: 10.1186/s10020-021-00422-z.

61. Newkirk MM, van Venrooij WJ, Marshall GS. Autoimmune response to U1 small nuclear ribonucleoprotein (U1 snRNP) associated with cytomegalovirus infection. Arthritis Res. 2001;3(4): 253-258. doi: 10.1186/ar310.

62. Liu Z. Chu A. Sjögren's Syndrome and Viral Infections. Rheumatol Ther. 2021;8(3): 1051-1059. doi: 10.1007/s40744-021-00334-8

63. Didier K, Bolko L , Giusti D, et al. Autoantibodies Associated with Connective Tissue Diseases: What Meaning for Clinicians? Front Immunol. 2018. 9: 541. doi: 10.3389/fimmu.2018.00541

64. Duran I, Turkmen E, Dilek M, Sayarlioglu H, Arik N. ANCA-associated vasculitis after COVID-19. Rheumatol Int. 2021. 41(8):1523-1529. doi: 10.1007/s00296-021-04914-3

65. Oda R, Inagaki T, Ishikane M. et al. Case of adult large vessel vasculitis after SARS-CoV-2 infection. Ann Rheum Dis. 2020; 82(1): doi: 10.1136/annrheumdis-2020-218440.

66. Baimukhamedov C, Barskova T, Matucci-Cerinic M, Arthritis after SARS-CoV-2 infection. Lancet Rheumatol. 2021; 3(5):e324. doi: 10.1016/S2665-9913(21)00067-9

67. Slimani Y, Abbassi R, El Fatoiki F-Z, Barrou L, Chiheb S. Systemic lupus erythematosus and varicella-like rash following COVID-19 in a previously healthy patient. J Med Virol. 2021; 93(2): 1184-1187. doi: 10.1002/jmv.26513

68. Beydon M, Chevalier K, Al Tabaa O, et al. Myositis as a manifestation of SARS-CoV-2. Ann Rheu Dis. 2021; 80(3): e42. doi: 10.1136/annrheumdis-2020-217573

69. Zamani B., Taba S-MM, Shayestehpour M, Systemic lupus erythematosus manifestation following COVID-19: a case report. J Med Case Rep. 2021; 15(1): p. 29. doi: 10.1186/s13256-020-02582-8

70. de Ruijter NS, Kramer G, Gons RAR , Hengstman GJD. Neuromyelitis optica spectrum disorder after presumed coronavirus (COVID-19) infection: A case report. Mult Scler Relat Disord, 2020. 46:102474. doi: 10.1016/j.msard.2020.102474

71. Fineschi S. Case Report: Systemic Sclerosis After Covid-19 Infection. Front Immunol 2021;12: p.686699. doi: 10.3389/fimmu.2021.686699

72. Eltobgy MM, Zani A, Kenney AD, et al. Caspase-4/11 exacerbates disease severity in SARS-CoV-2 infection by promoting inflammation and immunothrombosis. Proc Natl Acad Sci U S A. 2022; 119(21): e2202012119.
doi: 10.1073/pnas.2202012119

73. Zamboni DS. CASP4/11 Contributes to NLRP3 Activation and COVID-19 Exacerbation. J Infect Dis. 2023;15: 227(12):1364-1375 doi: 10.1093/infdis/jiad037

74. Maleki BH, Tartibian B. COVID-19 and male reproductive function: a prospective, longitudinal cohort study. Reproduction. 2021;161:319–331. doi: 10.1530/REP-20-0382

75. de Sa KS, Silva J, Bayarri-Olmos1 R,Brinda R, et.al. A causal link between autoantibodies and neurological symptoms in long COVID. medRxiv (Preprint). 2024; Jun 19:2024.06.18.24309100.
doi: 10.1101/2024.06.18.24309100.

76. Iwasaki A, Putrino D. Why we need a deeper understanding of the pathophysiology of Lcov. Lancet Infect Dis. 2023; 23(4):393. doi: 10.1016/S1473-3099(23)00053-1.

77. Dowd JB, Simanek AM, Aiello AE. Socio-economic status, cortisol and allostatic load: a review of the literature. Int J Epidemiol. 2009;38 (5):1297. doi: 10.1093/ije/dyp277.

78. Chowdhury S, Chowdhury MH. Social and environmental factors influencing COVID-19 transmission and mortalities in developing and developed nations. Epidemiology Biostatistics and Public Health (EBPH). 2023; 18 (2): 2023 [ISSN 2282-0930]

79. Jiang Y, Neal J, Sompol P, et al. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimer's Dement. 2024; 20 (10): 7296. doi.org/10.1002/alz.14089.

80. Han PF, Che XD, Li HZ, Gao YY, Wei XC, Li PC. Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin J Traumatol .2020; 23(2), 96-101. doi: 10.1016/j.cjtee.2020.02.002

81. Molnar T, Lehoczki A, Fekete M, et al. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024; 46(5): 5267 doi: 10.1007/s11357-024-01165-5