Challenges and Opportunities in Systemic Biomarkers for Age-related Macular Degeneration
Main Article Content
Abstract
Blood biomarkers have been widely used in medicine for the prevention, diagnosis, and treatment follow-up of many diseases. Age-related macular degeneration, the main cause of irreversible blindness in old age, does not benefit from these important indicators. In recent decades, technological advances have given us optical coherence tomography. Until a few years ago, this exam was used for the diagnosis, and treatment evaluation of age-related macular degeneration. Currently, as part of multimodal fundus imaging, it has also been used in the prognosis of age-related macular degeneration. However, these exams are still not capable of predicting when individuals may trigger the degenerative macular disease, and consequently adopt preventive measures, such as changes in lifestyle and consumption of antioxidants. In this regard, this article aims to address the various blood biomarkers that may be useful in the early investigation of age-related macular degeneration, even before the appearance of drusen and retinal pigment epithelium changes in the macular region, the first ophthalmoscopic manifestations of age-related macular degeneration. Among these biomarkers analyzed, the blood count, lipid profile, some enzymatic and non-enzymatic antioxidants, as well as the main inflammatory biomarkers, stand out.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Ramlall V, Thangaraj PM, Meydan C, et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS‐CoV‐2 infection. Nat Med. 2020;26:1609‐1615.
3. Yang JM, Moon SY, Lee JY, Agalliu D, Yon DK, Lee SW. COVID-19 Morbidity and Severity in Patients With Age-Related Macular Degeneration: A Korean Nationwide Cohort Study. Am J Ophthalmol. 2022 Jul;239:159-169.
4. Torres RJ. Insights into COVID‐19 in age‐related macular degeneration. Pan Am J Ophthalmol. 2023;5:18
5. Jabs DA, Van Natta ML, Trang G, et al. Association of age‐related macular degeneration with mortality in patients with acquired immunodeficiency syndrome; role of systemic inflammation. Am J Ophthalmol. 2019;199:230‐237.
6. Gopinath B, Liew G, Burlutsky G, Mitchell P. Age-related macular degeneration and risk of total and cause-specific mortality over 15 years. Maturitas. 2016 Feb;84:63-67.
7. Wang J, Xue Y, Thapa S, Wang L, Tang J, Ji K. Relation between Age-Related Macular Degeneration and Cardiovascular Events and Mortality: A Systematic Review and Meta-Analysis. Biomed Res Int. 2016;2016:8212063.
8. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832.
9. Li C, Yuan J, Zhu YF, et al. Imbalance of Th17/Treg in Different Subtypes of Autoimmune Thyroid Diseases. Cell Physiol Biochem. 2016; 40: 245-252.
10. Sokolove J, Lepus CM: Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013; 5: 77-94.
11. Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol. 2011; 8: 348-358.
12. Cheung CMG, Wong TY. Is age-related macular degeneration a manifestation of systemic disease? New prospects for early intervention and treatment. J Intern Med. 2014;276(2):140–153.
13. Chen J, Wang W, Li Q. Increased Th1/Th17 responses contribute to low‐grade inflammation in age‐related macular degeneration. Cell Physiol Biochem. 2017;44:357‐367.
14. Nassar K, Grisanti S, Elfar E, Lüke J, Lüke M, Grisanti S. Serum cytokines as biomarkers for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2015 May;253(5):699-704.
15. Falk MK, Singh A, Faber C, Nissen MH, Hviid T, Sørensen TL. Dysregulation of CXCR3 expression on peripheral blood leukocytes in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014 May 8;55(7):4050-6.
16. Seddon JM, George S, Rosner B, Rifai N. Progression of age‐related macular degeneration: Prospective assessment of C‐reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol. 2005;123:774‐782.
17. Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Nissen MH, Sørensen TL. Systemic Levels of Interleukin-6 Correlate With Progression Rate of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2019 Jan 2;60(1):202-208.
18. Afarid M, Azimi A, Malekzadeh M. Evaluation of serum interferons in patients with age‐related macular degeneration. J Res Med Sci. 2019;24:24.
19. Subhi Y, Krogh Nielsen M, Molbech CR, et al. Plasma markers of chronic low‐grade inflammation in polypoidal choroidal vasculopathy and neovascular age‐related macular degeneration. Acta Ophthalmol. 2019;97:99‐106.
20. Mitta VP, Christen WG, Glynn RJ, et al. C‐reactive protein and the incidence of macular degeneration: Pooled analysis of 5 cohorts. JAMA Ophthalmol. 2013;131:507‐513.
21. Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Nissen MH, Sørensen TL. Chemokine Profile and the Alterations in CCR5-CCL5 Axis in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2020 Apr 9;61(4):28.
22. Guymer RH, Tao LW, Goh JK, et al. Identification of urinary biomarkers for age‐related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52:4639‐4644.
23. Tuo J, Grob S, Zhang K, Chan C-C: Genetics of Immunological and Inflammatory Components in Age-related Macular Degeneration. Ocul Immunol Inflamm. 2012; 20: 27-36.
24. Wagner BD, Patnaik JL, Palestine AG, et al. Association of Systemic Inflammatory Factors with Progression to Advanced Age-related Macular Degeneration. Ophthalmic Epidemiol. 2022 Apr;29(2):139-148.
25. Frederick PA, Kleinman ME. The Immune System and AMD. Curr Ophthalmol Rep. 2014 Mar 1;2(1):14-19.
26. Klein R, Myers CE, Cruickshanks KJ, et al. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early age-related macular degeneration: the Beaver Dam Eye Study. JAMA Ophthalmol. 2014 Apr 1;132(4):446-55.
27. Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci. 2020; 16(15):2989-3001.
28. Wong T, Chakravarthy U, Klein R, et al. The Natural History and Prognosis of Neovascular Age-Related Macular Degeneration. Ophthalmology. 2008;115: 116-126.
29. Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci. 2023 Jan 30;24(3):2636.
30. Wong TY, Liew G, Mitchell P. Clinical update: new treatments for age-related macular degeneration. Lancet. 2007; 370: 204-206.
31. CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. N Engl J Med. 2011; 364: 1897-1908.
32. Hussain RM, Ciulla TA. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin Emerg Drugs. 2017; 22: 235-246.
33. Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther. 2016; 10: 1857-1867.
34. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K; SEVEN-UP Study Group. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013 Nov;120(11):2292-9.
35. Little K, Ma JH, Yang N, et al. Myofibroblasts in macular fibrosis secondary to neovascular age-related macular degeneration - the potential sources and molecular cues for their recruitment and activation. EBioMedicine. 2018; 38: 283-291.
36. Heier JS, Lad EM, Holz FG, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet. 2023; 402:1434–1448.
37. Liao DS, Grossi FV, El Mehdi D, et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: A randomized phase 2 trial. Ophthalmology. 2020;127:186–195.
38. Nathoo NA, Or C, Young M, et al. Optical coherence tomography-based measurement of drusen load predicts development of advanced age-related macular degeneration. Am J Ophthalmol. 2014;158:757–761.e1.
39. Folgar FA, Yuan EL, Sevilla MB, et al. Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration. Ophthalmology. 2016;123:139–50.e1.
40. Lad EM, Finger RP, Guymer R. Biomarkers for the Progression of Intermediate Age-Related Macular Degeneration. Ophthalmol Ther. 2023 Dec;12(6):2917-2941.
41. Trinh M, Cheung R, Duong A, Nivison-Smith L, Ly A. OCT Prognostic Biomarkers for Progression to Late Age-related Macular Degeneration: A Systematic Review and Meta-analysis. Ophthalmol Retina. 2023 Dec 27:S2468-6530(23)00668-1.
42. Damian I, Nicoară SD. SD-OCT Biomarkers and the Current Status of Artificial Intelligence in Predicting Progression from Intermediate to Advanced AMD. Life (Basel). 2022 Mar 19;12(3):454.
43. Curcio CA, Millican CL. Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol. 1999;117:329–339.
44. Bressler NM, Silva JC, Bressler SB, Green WR. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina. 1994;14:130–142
45. Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells. 2023 Jun 23;12(13):1708.
46. Fan Q, Maranville JC, Fritsche L, et al. HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization. Int J Epidemiol. 2017 Dec 1;46(6):1891-1902.
47. Velilla S, García-Medina JJ, García-Layana A, et al. Smoking and age-related macular degeneration: review and update. J Ophthalmol. 2013;2013:895147.
48. Dighe S, Zhao J, Steffen L, Mares JA, et al. Diet patterns and the incidence of age-related macular degeneration in the Atherosclerosis Risk in Communities (ARIC) study. Br J Ophthalmol. 2020 Aug;104(8):1070-1076.
49. Zhang QY, Tie LJ, Wu SS, et al. Overweight, Obesity, and Risk of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1276-1283.
50. Mauschitz MM, Schmitz MT, Verzijden T, et al. Physical Activity, Incidence, and Progression of Age-Related Macular Degeneration: A Multicohort Study. Am J Ophthalmol. 2022 Apr;236:99-106.
51. Feng J, Xie F, Wu Z, Wu Y. Age-related macular degeneration and cardiovascular disease in US population: an observational study. Acta Cardiologica. 2023; 1–7. https://doi.org/10.1080/00015385.2023.2295103
52. Schnabolk G. Systemic inflammatory disease and AMD comorbidity. Adv Exp Med Biol. 2019;1185: 27–31.
53. Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2008 Dec;2(4):879-889.
54. McBean GJ, Aslan M, Griffiths HR, Torrão RC. Thiol redox homeostasis in neurodegenerative disease. Redox Biol. 2015;5:186–194.
55. Johnson LV, Ozaki S, Staples MK, Erickson PA, Anderson DH. A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res. 2000; 70(4):441-449
56. Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res. 2001; 73(6):887-896.
57. Handerson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134(3):411-431.
58. Hollyfield JG, Bonilha VL, Rayborn ME, et al. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med. 2008 Feb;14(2):194-198.
59. Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells. 2022 Nov 1;11(21):3453.
60. Pinna A, Porcu T, D'Amico-Ricci G, et al. Complete Blood Cell Count-Derived Inflammation Biomarkers in Men with Age-Related Macular Degeneration. Ocul Immunol Inflamm. 2019;27(6):932-936.
61. Shankar A, Mitchell P, Rochtchina E, Tan J, Wang JJ. Association between circulating white blood cell count and long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Am J Epidemiol. 2007 Feb 15;165(4):375-382.
62. Naif S, Majed R, Mohieldin E, Hanan A, Lamis A, Maha A. Neutrophil-Lymphocyte Ratios in Dry Age-Related Macular Degeneration. Ocul Immunol Inflamm. 2022 Jul 13:1-6.
63. Kurtul BE, Ozer PA. The Relationship between Neutrophil-to-lymphocyte Ratio and Age-related Macular Degeneration. Korean J Ophthalmol. 2016 Oct;30(5):377-381.
64. Sengul EA, Artunay O, Kockar A, et al. Correlation of neutrophil/lymphocyte and platelet/lymphocyte ratio with visual acuity and macular thickness in age-related macular degeneration. Int J Ophthalmol. 2017 May 18;10(5):754-759.
65. Xue CC, Cui J, Gao LQ, et al. Peripheral Monocyte Count and Age-Related Macular Degeneration. The Tongren Health Care Study. Am J Ophthalmol. 2021 Jul;227:143-153.
66. Dąbrowska M. Zielińska A, Nowak I. Lipid oxidation products as a potential health and analytical problem. Chemik. 2015; 69: 89-94.
67. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011; 111: 5944-5972.
68. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014: 360438.
69. Lüdtke L, Jürgens C, Ittermann T, Völzke H, Tost F. Age-related macular degeneration and associated risk factors in the population-based study of health in pomerania (SHIP-Trend) Med Sci Monit. 2019;25:6383–6390.
70. Mao F, Yang X, Yang K, et al. Six-year incidence and risk factors for age-related macular degeneration in a rural Chinese population: the Handan Eye study. Investig Ophthalmol Vis Sci. 2019;60:4966–4971.
71. Wang Y, Wang M, Zhang X, et al. The association between the lipids levels in blood and risk of age-related macular degeneration. Nutrients. 2016;8:663.
72. Sasaki M, Harada S, Kawasaki Y, et al. Gender-specific association of early age-related macular degeneration with systemic and genetic factors in a Japanese population. Sci Rep. 2018;8:785.
73. Kananen F, Strandberg T, Loukovaara S, Immonen I. Early middle age cholesterol levels and the association with age-related macular degeneration. Acta Ophthalmol. 2021 Nov;99(7):e1063-e1069. doi: 10.1111/aos.14774. Epub 2021 Feb 3.
74. Lin JB, Halawa OA, Husain D, Miller JW, Vavvas DG. Dyslipidemia in age-related macular degeneration. Eye (Lond). 2022 Feb;36(2):312-318.
75. Colijn JM, den Hollander AI, Demirkan A, et al. Increased high-density lipoprotein levels associated with age-related macular degeneration: evidence from the EYE-RISK and European Eye Epidemiology Consortia. Ophthalmology. 2019;126:393–406
76. Yip JLY, Khawaja AP, Chan MPY, et al. Cross sectional and longitudinal associations between cardiovascular risk factors and age related macular degeneration in the EPIC-Norfolk Eye Study. PLoS ONE. 2015;10:e0132565.
77. Burgess S, Davey, Smith G. Mendelian randomization implicates high-density lipoprotein cholesterol-associated mechanisms in etiology of age-related macular degeneration. Ophthalmology. 2017;124:1165–1174.
78. Han X, Ong J-S, Hewitt AW, Gharahkhani P, MacGregor S. The effects of eight serum lipid biomarkers on age-related macular degeneration risk: a Mendelian randomization study. Int J Epidemiol. 2021;50:325–336
79. Nordestgaard LT, Tybjærg-Hansen A, Frikke-Schmidt R, Nordestgaard BG. Elevated apolipoprotein A1 and HDL cholesterol associated with age-related macular degeneration: 2 population cohorts. J Clin Endocrinol Metab. 2021;106(7):e2749–e2758.
80. Hwang S, Kang SW, Choi J, et al. Lipid profile and future risk of exudative age-related macular degeneration development: a nationwide cohort study from South Korea. Sci Rep. 2022 Nov 5;12(1):18777.
81. Yildirim Z, Ucgun NI, Yildirim F. The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration. Clinics (Sao Paulo Braz.). 2011; 66:743–746.
82. Ulańczyk Z, Grabowicz A, Cecerska-Heryć E, Śleboda-Taront D, et al. Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity. Antioxidants (Basel). 2020 Oct 5;9(10):954.
83. Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology. 2013 Oct;14(5):461-482.
84. Torres RJA, Torres RJA, Luchini A, Ferreira ALDA. The nuclear factor E2-related factor 2 and age-related macular degeneration. Arq Bras Oftalmol 2023 Mar-Apr;86(2):178-187.
85. Zafrilla P, Losada M, Perez A, Caravaca G, Mulero J. Biomarkers of oxidative stress in patients with wet age related macular degeneration. J Nutr Health Aging. 2013; 17:219–222.
86. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983; 52(1):711-760.
87. Sies H, Gerstenecker C, Menzel H, Flohé L. Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS. 1972; 27(1):171-175.
88. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143–3153.
89. Cantin AM, North SL, Hubbard RC, Crystal RG. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol. 1987;63:152–157.
90. Brodzka S, Baszyński J, Rektor K, et al. The Role of Glutathione in Age-Related Macular Degeneration (AMD). Int J Mol Sci. 2024 Apr 9;25(8):4158.
91. Tate DJ Jr, Newsome DA, Oliver PD. Metallothionein shows an age-related decrease in human macular retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1993;34(7):2348-2351.
92. Liles MR, Newsome DA, Oliver PD. Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol. 1991; 109(9):1285-1288.
93. Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018; 9:753.
94. Brantley MA, Osborn MP, Sanders BJ, et al. Plasma biomarkers of oxidative stress and genetic variants in age-related macular degeneration. Am J Ophthalmol. 2012;153:460–467.
95. Nowak M, Swietochowska E, Wielkoszyński T, et al. Changes in blood antioxidants and several lipid peroxidation products in women with age-related macular degeneration. Eur J Ophthalmol. 2003;13:281–286.
96. Samiec PS, Drews-Botsch C, Flagg EW, et al. Glutathione in human plasma: Decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998;24:699–704.
97. Coral K, Raman R, Rathi S, et al. Plasma homocysteine and total thiol content in patients with exudative age-related macular degeneration. Eye. 2006; 20:203–207.
98. Ates O, Alp HH, Mumcu U, et al. The effect of L-carnitine treatment on levels of malondialdehyde and glutathione in patients with age related macular degeneration. Eur J Med. 2008; 40:1–5.
99. Javadzadeh A, Ghorbanihaghjo A, Bahreini E, Rashtchizadeh N, Argani H, Alizadeh S. Plasma oxidized LDL and thiol-containing molecules in patients with exudative age-related macular degeneration. Mol Vis 2010; 16: 2578–2584.
100. Flohé L. The glutathione peroxidase reaction: molecular basis of the antioxidant function of selenium in mammals. Curr Top Cell Regul. 1985;27:473-478
101. Ohira A, Tanito M, Kaidzu S, Kondo T. Glutathione peroxidase induced in rat retinas to counteract photic injury. Invest Ophthalmol Vis Sci. 2003;44(3):1230–6.
102. Lu L, Oveson BC, Jo YJ, Lauer TW, et al. Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid Redox Signal. 2009;11(4):715-724.
103. Zakowski JJ, Forstrom JW, Condell RA, Tappel AL. Attachment of selenocysteine in the catalytic site of glutathione peroxidase. Biochem Biophys Res Commun. 1978;84(1):248-253.
104. Ueta T, Inoue T, Furukawa T, et al. Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J Biol Chem. 2012; 287:7675–7682.
105. Delcourt C, Cristol JP, Léger CL, Descomps B, Papoz L. Associations of antioxidant enzymes with cataract and age-related macular degeneration. The POLA Study. Pathologies Oculaires Liées à l’Age. Ophthalmology. 1999;106(2):215-222.
106. Prashar S, Pandav SS, Gupta A, Nath R. Antioxidant enzymes in RBCs as a biological index of age-related macular degeneration. Acta Ophthalmol (Copenh). 1993;71(2):214-218.
107. Cohen SM, Olin KL, Feuer WJ, Hjelmeland L, Keen CL, Morse LS. Low glutathione reductase and peroxidase activity in age-related macular degeneration. Br J Ophthalmol. 1994;78(10):791-794.
108. Plestina-Borjan I, Katusic D, Medvidovic-Grubisic M, S et al. Association of age-related macular degeneration with erythrocyte antioxidant enzymes activity and serum total antioxidant status. Oxid Med Cell Longev. 2015;2015:804054.
109. Venza I, Visalli M, Cucinotta M, Teti D, Venza M. Association between oxidative stress and macromolecular damage in elderly patients with age-related macular degeneration. Aging Clin Exp Res. 2012 Feb;24(1):21-27.
110. Mrowicka M, Mrowicki J, Szaflik JP, et al. Analysis of antioxidative factors related to AMD risk development in the polish patients. Acta Ophthalmol. 2017 Aug;95(5):530-536.
111. Qin L, Mroczkowska SA, Ekart A, Patel SR, Gibson JM, Gherghel D. Patients with early age-related macular degeneration exhibit signs of macro- and micro-vascular disease and abnormal blood glutathione levels. Graefes Arch Clin Exp Ophthalmol. 2014 Jan;252(1):23-30.
112. Fujii T, Mori K, Takahashi Y, et al. Immunohistochemical study of glutathione reductase in rat ocular tissues at different developmental stages. Histochem J. 2001;33(5):267–272.
113. Saxena M, Singhal SS, Awasthi YC. A specific, sensitive, and rapid method for the determination of glutathione and its application in ocular tissues. Exp Eye Res. 1992;55(3):461–468.
114. Huster D, Hjelle OP, Haug FM, Nagelhus EA, Reichelt W, Ottersen OP. Subcellular compartmentation of glutathione and glutathione precursors. A high resolution immunogold analysis of the outer retina of guinea pig. Anat Embryol (Berl). 1998;198(4):277–287.
115. Čolak E, Majkić-Singh N, Žoric L, Radosavljević A, Kosanović-Jaković N. The impact of inflammation to the antioxidant defense parameters in AMD patients. Aging Clin Exp Res. 2012 Dec;24(6):588-594.
116. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–6055.
117. Indo HP, Yen HC, Nakanishi I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56(1):1–7.
118. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–162
119. Yamamoto M, Lidia K, Gong H, Onitsuka S, Kotani T, Ohira A. Changes in manganese superoxide dismutase expression after exposure of the retina to intense light. Histochem J. 1999;31(2):81–87.
120. Sachdeva MM, Cano M, Handa JT. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res. 2014;119:111–114.
121. Jia L, Dong Y, Yang H, Pan X, Fan R, Zhai L. Serum superoxide dismutase and malondialdehyde levels in a group of Chinese patients with age-related macular degeneration. Aging Clin Exp Res. 2011: 23:264–267.
122. Rex TS, Tsui I, Hahn P, et al. Adenovirus-mediated delivery of catalase to retinal pigment epithelial cells protects neighboring photoreceptors from photo-oxidative stress. Hum Gene Ther. 2004; 15:960–967.
123. Masters C, Pegg M, Crane D. On the multiplicity of the enzyme catalase in mammalian liver. Mol Cell Biochem. 1986;70(2):113–120.
124. Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman HN. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood. 1989;73(1):334–339
125. Robison WG Jr, Kuwabara T. Vitamin A storage and peroxisomes in retinal pigment epithelium and liver. Invest Ophthalmol Vis Sci. 1977;16(12):1110–1117.
126. Beard ME, Davies T, Holloway M, Holtzman E. Peroxisomes in pigment epithelium and Müller cells of amphibian retina possess D-amino acid oxidase as well as catalase. Exp Eye Res. 1988;47(6):795–806.
127. Frank RN, Amin RH, Puklin JE. Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration. Am J Ophthalmol. 1999;127(6):694–709
128. Wu R, Feng J, Yang Y, et al. Significance of Serum Total Oxidant/Antioxidant Status in Patients with Colorectal Cancer. PLoS One. 2017 Jan 19;12(1):e0170003.
129. Totan Y, Yağci R, Bardak Y, et al. Oxidative macromolecular damage in age-related macular degeneration. Curr Eye Res. 2009; 34:1089-1093.
130. Tarpey MM, Wink DA, Grisham MB. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol, Regul Integr Comp Physiol. 2004;286(3):R431–444.
131. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005 Dec;38(12):1103-1111.
132. Uğurlu N, Aşık MD, Yülek F, Neselioglu S, Cagil N. Oxidative stress and anti-oxidative defence in patients with age-related macular degeneration. Curr Eye Res. 2013 Apr;38(4):497-502.
133. Elbay A, Ozer OF, Akkan JCU, et al. Comparison of serum thiol-disulphide homeostasis and total antioxidant-oxidant levels between exudative age-related macular degeneration patients and healthy subjects. Int Ophthalmol. 2017 Oct;37(5):1095-1101.
134. Crews H, Alink G, Andersen R, et al. A critical assessment of some biomarker approaches linked with dietary intake. Br J Nutr. 2001 Aug;86 Suppl 1:S5-35. doi: 10.1079/bjn2001337.
135. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003; 9:169-176.
136. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002; 32:790-796.
137. Regazzoni L, de Courten B, Garzon D, et al. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect. Sci Rep. 2016; 6:27224
138. de Almeida Torres RJ, Moreto F, Luchini A, et al. Carnosine supplementation and retinal oxidative parameters in a high-calorie diet rat model. BMC Ophthalmol. 2023 Dec 8;23(1):502.
139. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009; 28:348–368.
140. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol. 2003; 48:257–293.
141. Torres RJDA, Torres R, Luchini A, Ferreira ALDA. Transcription Factor NF-κβ and Molecules Derived from its Activation in Age-Related Macular Degeneration. Integr J Med Sci [Internet]. 2021 Mar. 30 [cited 2023 Oct. 1];8. Available from: https://mbmj.org/index.php/ijms/article/view/393
142. de Almeida Torres RJ, de Almeida Torres RJ, Luchini A, Anjos Ferreira AL. The oxidative and inflammatory nature of age-related macular degeneration. J Clin Ophthalmol Res. 2022;10:3-8.
143. Akdis M, Burgler S, Crameri R, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011 Mar;127(3):701-21.e1-70.
144. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000 Mar;52(1):145-176.
145. Kopf M, Baumann H, Freer G, et al. Impaired immune and acute-phase responses in interleukin-6-defiecient mice. Nature. 1994;368:339-342.
146. Elner VM, Scales W, Elner SG, Danforth J, Kunkel SL, Strieter RM. Interleukin-6 (IL-6) gene expression and secretion by cytokine-stimulated human retinal pigment epithelial cells. Exp Eye Res. 1992;54:361-368.
147. Nagineni CN, Detrick B, Hooks JJ. Synergistic effects of gamma interferon on inflammatory mediators that induce interleukin-6 gene expression and secretion by human retinal pigment epithelial cells. Clin Diagn Lab Immunol. 1994;1:569–577.
148. Corbi P, Rahmati M, Delwail A, et al. Circulating soluble gp130, soluble IL-6R, and IL-6 in patients undergoing cardiac surgery, with or without extracorporeal circulation. Eur J Cardiothorac Surg. 2000;18:98-103.
149. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990; 8:253-278.
150. Koto T, NagaiN, Mochimaru H, et al. Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice. Invest Ophthalmol Vis Sci. 2007;48:4328-4334.
151. Paimela T, Ryhänen T, Mannermaa E, et al. The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett. 2007;110:139-144.
152. Cohen T, Nahari D, Cerem LW, Gera N, Levi B. Interleukin-6 induces the expression of vascular endothelial growth factor. J Biol Chem. 1996; 271:736–741
153. Nahavandipour A, Krogh Nielsen M, Sørensen TL, Subhi Y. Systemic levels of interleukin-6 in patients with age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol. 2020 Aug;98(5):434-444.
154. Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunological reviews. 2011; 243(1):191–205.
155. Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1beta. Cytokine Growth Factor Rev. 2002 Dec;13(6):483-502.
156. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunological reviews. 2011; 243(1): 206–214.
157. Doyle SL, Campbell M, Ozaki E, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med.2012;18(5):791–798.
158. Anderson OA, Finkelstein A, Shima DT. A2E induces IL-1ss production in retinal pigment epithelial cells via the NLRP3 inflammasome. PLoS One. 2013; 8(6): e67263
159. Yang D, Elner SG, Bian ZM, et al. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res. 2007;85:462–472.
160. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003; 108:1930–1932.
161. Venugopal SK, Devaraj S, JialalI. Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am J Pathol. 2005; 166:1265–1271.
162. Pearson TA, Mensah GA, Hong Y, Smith SC Jr, CDC; AHA. CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: overview. Circulation. 2004 Dec 21;110(25):e543-544.
163. Ganter U, Arcone R, Toniatti C, Morrone G, Ciliberto G. Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J. 1989 Dec 1; 8(12):3773-3779
164. Hogg RE, Woodside JV, Gilchrist SE, et al. Cardiovascular disease and hypertension are strong risk factors for choroidal neovascularization. Ophthalmology. 2008 Jun;115(6):1046-1052.e2.
165. Boekhoorn SS, Vingerling JR, Witteman JC, Hofman A, de Jong PT. C-reactive protein level and risk of aging macula disorder: The Rotterdam Study. Arch Ophthalmol. 2007;125(10):1396-1401.
166. Schaumberg DA, Christen WG, Buring JE, Glynn RJ, Rifai N, Ridker PM. High-sensitivity C-reactive protein, other markers of inflammation, and the incidence of macular degeneration in women. Arch Ophthalmol. 2007;125(3):300-305.
167. Čolak E, Kosanović-Jaković N, Žorić L, Radosavljević A, Stanković S, Majkić-Singh N. The association of lipoprotein parameters and C-reactive protein in patients with age-related macular degeneration. Ophthalmic Res. 2011;46:125–132.
168. Feng C, Krogh Nielsen M, Sørensen TL, Subhi Y. Systemic levels of C-reactive protein in patients with age-related macular degeneration: A systematic review with meta-analyses. Mech Ageing Dev. 2020 Oct;191:111353.
169. Hong T, Tan AG, Mithchell P, Wang JJ. A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol. 2011;56:184-194.
170. Ryuto M, Ono M, Izumi H, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem. 1996;271:28220-28228.
171. Patterson C, Perrella MA, Endege WO, Yoshizumi M, Lee ME, Haber E. Downregulation of vascular endothelial growth factor receptors by tumor necrosis factor-alpha in cultured human vascular endothelial cells. J Clin Invest. 1996;98:490-496.
172. Oh H, Takagi H, Takagi C, et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1999 Aug;40(9):1891-1898.
173. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996; 84:299-308.
174. Semkova I, Muether PS, Kuebbeler M, Meyer KL, Kociok N, Joussen AM. Recruitment of Blood-Derived Inflammatory Cells Mediated via Tumor Necrosis Factor-Receptor 1b Exacerbates Choroidal Neovascularization. Invest Ophthalmol Vis Sci. 2011; 52:6101-6108.
175. Luo D, Luo Y, He Y, et al. Differential functions of tumor necrosis factor receptor 1 and 2 signaling in ischemia-mediated arteriogenesis and angiogenesis. Am J Pathol. 2006; 169:1886-1898
176. Udsen M, Tagmose C, Garred P, Nissen MH, Faber C. Complement activation by RPE cells preexposed to TNFα and IFNγ. Exp Eye Res. 2022 May;218:108982.
177. Faber C, Jehs T, Juel HB, et al. Early and exudative age-related macular degeneration is associated with increased plasma levels of soluble TNF receptor II. Acta Ophthalmol. 2015 May;93(3):242-247.
178. Khan AH, Pierce CO, De Salvo G, et al. The effect of systemic levels of TNF-alpha and complement pathway activity on outcomes of VEGF inhibition in neovascular AMD. Eye (Lond). 2022 Nov;36(11):2192-2199.
179. Papadopoulos Z. The role of the cytokine TNF-α in choroidal neovascularization: a systematic review. Eye (Lond). 2024 Jan;38(1):25-32.
180. Baggiolini M, Walz A, Kunkcl SL. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 1989; 84,1045-1049
181. Lechner J, Chen M, Hogg RE, et al. Peripheral blood mononuclear cells from neovascular age-related macular degeneration patients produce higher levels of chemokines CCL2 (MCP-1) and CXCL8 (IL-8). J Neuroinflammation. 2017 Feb 23;14(1):42.
182. Zwahlen R, Walz A, Rot A. In vitro and in vivo activity and pathophysiology of human interleukin-8 and related peptides. Int Rev Exp Pathol. 1993;34:27-42.
183. Agrawal R, Balne PK, Wei X, et al. Cytokine Profiling in Patients With Exudative Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. Invest Ophthalmol Vis Sci. 2019 Jan 2;60(1):376-382.
184. Liukkonen MPK, Paterno JJ, Kivinen N, Siintamo L, Koskela AKJ, Kaarniranta K. Epithelial-mesenchymal transition-related serum markers ET-1, IL-8 and TGF-β2 are elevated in a Finnish wet age-related macular degeneration cohort. Acta Ophthalmol. 2022 Aug;100(5):e1153-e1162.
185. Roshanipour N, Shahriyari E, Ghaffari Laleh M, et al. Associations of TLR4 and IL-8 genes polymorphisms with age-related macular degeneration (AMD): a systematic review and meta-analysis. Ophthalmic Genet. 2021 Dec;42(6):641-649.
186. Ricci F, Staurenghi G, Lepre T, et al. Haplotypes in IL-8 Gene Are Associated to Age-Related Macular Degeneration: A Case-Control Study. PLoS ONE. 2013; 8(6): e66978.
187. Zhao C, Wu M, Zeng N, et al. Cancer-associated adipocytes: Emerging supporters in breast cancer. J Exp Clin Cancer Res CR. 2020;39(1):156.
188. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol. 2000;18:593¬620.
189. Weber C, Schober A, Zernecke A. Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 2004; 24(11):1997¬2008. (Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338:(7):436-445.
190. Peterson PK, Hu S, Salak-Johnson J, Molitor TW, Chao CC. Differential Production of and Migratory Response to Beta Chemokines by Human Microglia and Astrocytes. J Infect Dis. 1997:175(2):478–481
191. Prodjosudjadi W, Gerritsma JS, Klar-Mohamad Ngaisah, et al. Production and cytokine-mediated regulation of monocyte chemoattractant protein-1 by human proximal tubular epithelial cells. Kidney Int. 1995;48(5):1477–1486.
192. Grassia G, Maddaluno M, Guglielmotti A, et al. The anti-inflammatory agent bindarit inhibits neointima formation in both rats and hyperlipidaemic mice. Cardiovasc Res. 2009;84(3):485–493.
193. Pons M Marin-Castano ME. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo. PLoS One . 2011;6:e16722.
194. Jonas JB, Tao Y, Neumaier M, Findeisen P. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Arch Ophthalmol. 2010;128:1281–1286.
195. Mata NL, Weng J, Travis GH. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR¬mediated retinal and macular degeneration. Proc Natl Acad Sci U.S.A. 2000;9:7154¬9 .
196. Higgins GT, Wang JH, Dockery P, Cleary PE, Redmond HP. Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Invest Ophthalmol Vis Sci. 2003;44:1775¬82.
197. Killingsworth MC, Sarks JP, Sarks SH. Macrophages related to Bruch's membrane in age-related macular degeneration. Eye (Lond). 1990;4 (pt 4): 613–621.
198. Sarks JP, Sarks SH, Killingsworth MC. Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. Eye (Lond). 1997; 11 (Pt 4): 515–522.
199. Lopez PF, Lambert HM, Grossniklaus HE, Sternberg PJr. Well-defined subfoveal choroidal neovascular membranes in age-related macular degeneration. Ophthalmology. 1993;100: 415–422.
200. Yamada K Sakurai E Itaya M Inhibition of laser-induced choroidal neovascularization by atorvastatin by downregulation of monocyte chemotactic protein-1 synthesis in mice. Invest Ophthalmol Vis Sci. 2007;48:1839–1843
201. Xie P, Kamei M, Suzuki M, et al. Suppression and regression of choroidal neovascularization in mice by a novel CCR2 antagonist, INCB3344. PLoS One. 2011;6:e28933.
202. Luhmann UF, Robbie S, Munro PM, et al. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5934-5943.
203. Ambati J, Anand A, Fernandez S, et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med. 2003 Nov;9(11):1390-1397.
204. Yang D, Elner SG, Chen X. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011;52:6026–6034.
205. Sennlaub F, Auvynet C, Calippe B, et al. CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med. 2013 Nov;5(11):1775-1793.
206. Falk MK, Singh A, Faber C, Nissen MH, Hviid T, Sørensen TL. CX3CL1/CX3CR1 and CCL2/CCR2 chemokine/chemokine receptor complex in patients with AMD. PLoS One. 2014 Dec 15;9(12):e112473.
207. Zor RK, Erşan S, Küçük E, Yıldırım G, Sarı İ. Serum malondialdehyde, monocyte chemoattractant protein-1, and vitamin C levels in wet type age-related macular degeneration patients. Ther Adv Ophthalmol. 2020 Sep 30;12:2515841420951682.
208. Zhou H, Zhao X, Chen Y. Plasma Cytokine Profiles in Patients With Polypoidal Choroidal Vasculopathy and Neovascular Age-Related Macular Degeneration. Asia Pac J Ophthalmol (Phila). 2022 Nov 1;11(6):536-542.
209. Palestine AG, Wagner BD, Patnaik JL, et al. Plasma C-C Chemokine Concentrations in Intermediate Age-Related Macular Degeneration. Front Med (Lausanne). 2021 Nov 18;8:710595.
210. Gudauskiene G, Vilkeviciute A, Gedvilaite G, Liutkeviciene R, Zaliuniene D. CCL2, CCR2 Gene Variants and CCL2, CCR2 Serum Levels Association with Age-Related Macular Degeneration. Life (Basel). 2022 Jul 12;12(7):1038.
211. Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I. Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012 Aug 7;53(9):5292-300.
212. Subhi Y, Krogh Nielsen M, Molbech CR, Sørensen TL. Altered proportion of CCR2+ and CX3CR1+ circulating monocytes in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Clin Exp Ophthalmol. 2018 Aug;46(6):661-669.
213. Schoggins JW. Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol. 2014;6:40-46.
214. Reyes-Vázquez C, Prieto-Gómez B, Dafny N. Interferon modulates central nervous system function. Brain Res. 2012;1442:76-89.
215. Chow KT, Gale M Jr. SnapShot: Interferon Signaling. Cell. 2015 Dec 17;163(7):1808-1808.e1. doi: 10.1016/j.cell.2015.12.008. PMID: 26687364.
216. Lückoff A, Caramoy A, Scholz R, Prinz M, Kalinke U, Langmann T. Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Mol Med .2016 Jun 1;8(6):670-678.
217. Li R, Maminishkis A, Wang FE, Miller SS. PDGF-C and -D induced proliferation/migration of human RPE is abolished by inflammatory cytokines. Invest Ophthalmol Vis Sci. 2007;48:5722–5732.
218. Borden EC, Hogan TF, Voelkel JG. Comparative antiproliferative activity in vitro of natural interferons alpha and beta for diploid and transformed human cells. Cancer Res. 1982;42:4948–4953.
219. Indraccolo S. Interferon-alpha as angiogenesis inhibitor: learning from tumor models. Autoimmunity. 2010;43:244–247.
220. Battle TE, Lynch RA, Frank DA. Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis. Cancer Res. 2006;66:3649–3657.
221. Kawano Y, Matsui N, Kamihigashi S, Narahara H, Miyakawa I. Effects of interferon-gamma on secretion of vascular endothelial growth factor by endometrial stromal cells. Am J Reprod Immunol. 2000;43:47–52.
222. Wu Z, Lauer TW, Sick A, Hackett SF, Campochiaro PA. Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem. 2007;282:22414–22425
223. Liu B, Faia L, Hu M, Nussenblatt RB. Pro-angiogenic effect of IFN gamma is dependent on the PI3K/mTOR/translational pathway in human retinal pigmented epithelial cells. Mol Vis. 2010;16:184–193.
224. Jiang K, Cao S, Cui JZ, Matsubara JA. Immuno-modulatory Effect of IFN-gamma in AMD and its Role as a Possible Target for Therapy. J Clin Exp Ophthalmol. 2013 Feb 26;Suppl 2:0071-76.
225. Cousins SW, Espinosa-Heidmann DG, Miller DM, et al. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization. PLoS Pathog. 2012;8:e1002671.
226. Brown J, Wallet MA, Krastins B, Sarracino D, Goodenow MM. Proteome bioprofiles distinguish between M1 priming and activation states in human macrophages. J Leukoc Biol. 2010;87:655–662.
227. Supanji S, Perdamaian ABI, Wardhana FS, et al. Circulating levels of Interferon-Gamma in patients with neovascular age-related macular degeneration in Yogyakarta. Med J Malaysia. 2022 Jul;77(Suppl 1):62-65.
228. Yu Y, Ren XR, Wen F, Chen H, Su SB. T-helper-associated cytokines expression by peripheral blood mononuclear cells in patients with polypoidal choroidal vasculopathy and age-related macular degeneration. BMC Ophthalmol. 2016 Jun 7;16:80.
229. Fonseca V, Guba SC, Fink LM. Hyperhomocysteinemia and the endo- crine system: implications for Atherosclerosis and thrombosis. Endocr Rev.1999;20:738–759.
230. Lee YJ, Ke CY, Tien N, Lin PK. Hyperhomocysteinemia Causes Chorioretinal Angiogenesis with Placental Growth Factor Upregulation. Sci Rep. 2018;8:15755.
231. Clark R. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. BMJ. 1998;316(7135):894-898.
232. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA. 1997 Jun 11;277(22):1775-1781.
233. Hustad S, Ueland PM, Vollset SE, Zhang Y, Bjorke-Monsen AL, Schneede J. Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clin Chem. 2000; 46:1065–1071.
234. Smith AD, Refsum H. Homocysteine - from disease biomarker to disease prevention. J Intern Med. 2021 Oct;290(4):826-854.
235. Smith AD, Refsum H, Bottiglieri T, et al. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis. 2018;62:561–570.
236. Fotiou P, Raptis A, Apergis G, Dimitriadis G, Vergados I, Theodossiadis P. Vitamin status as a determinant of serum homocysteine concentration in type 2 diabetic retinopathy. J Diabetes Res. 2014;2014:807209.
237. Anderson JL, Muhlestein JB, Horne BD, et al. Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation. 2000 Sep 12;102(11):1227-1232.
238. Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997 Jul 24;337(4):230-236.
239. Elsherbiny NM, Sharma I, Kira D, et al. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules. 2020 Mar 3;10(3):393.
240. Nowak M, Swietochowska E, Wielkoszynski T, et al. Homocysteine, vitamin B12, and folic acid in age-related macular degeneration. Eur J Ophthalmol. 2005;15:764–767
241. Kamburoglu G, Gumus K, Kadayifcilar S, Eldem B. Plasma homocysteine, vitamin B12 and folate levels in age-related macular degeneration. Graefes Arch. Clin Exp Ophthalmol. 2006;244:565–569.
242. Tawfik A, Samra YA, Elsherbiny NM, Al-Shabrawey M. Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules. 2020 Jul 29;10(8):1119.
243. Ibrahim AS, Mander S, Hussein KA, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget. 2016;7:8532–8545.
244. Samra YA, Kira D, Rajpurohit P, et al. Implication of N-Methyl-d-Aspartate Receptor in Homocysteine-Induced Age-Related Macular Degeneration. Int J Mol Sci. 2021;22:9356.
245. Tawfik A, Al-Shabrawey M, Roon P, et al. Alterations of retinal vasculature in cystathionine-beta-synthase mutant mice, a model of hyperhomocysteinemia. Investig Ophthalmol Vis Sci. 2013;54: 939–949.
246. Pinna A, Zaccheddu F, Boscia F, Carru C, Solinas G. Homocysteine and risk of age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol. 2018 May;96(3):e269-e276.
247. Huang P, Wang F, Sah BK, et al. Homocysteine and the risk of age-related macular degeneration: a systematic review and meta-analysis. Sci Rep. 2015 Jul 21;5:10585.
248. Gopinath B, Flood VM, Rochtchina E, Wang JJ, Mitchell P. Homocysteine, folate, vitamin B-12, and 10-y incidence of age-related macular degeneration. Am J Clin Nutr. 2013; 98: 129–135.
249. Merle BM, Silver RE, Rosner B, Seddon JM. Dietary folate, B vitamins, genetic susceptibility and progression to advanced nonexudative age-related macular degeneration with geographic atrophy: a prospective cohort study. Am J Clin Nutr. 2016; 103: 1135–1144.
250. Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE. Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: the Women's Antioxidant and Folic Acid Cardiovascular Study. Arch Intern Med. 2009; 169: 335–341