Role of Effective Noninvasive Vagal Stimulation on sleep quality in Patients with Insomnia
Main Article Content
Abstract
The insomnia has negative impact on mental health, physical productivity, and overall quality of life for individuals and communities. Insomnia frequently goes undiagnosed and untreated due to therapies and management barriers. Transcutaneous vagus nerve stimulation is a non-invasive neurostimulation intervention that targets the afferent auricular branch of the vagus nerve in the auricular concha, specifically the cymba concha
Vagus nerve electrical stimulation (VNS) has been used in the treatment of refractory epilepsy, depression, and insomnia. Transcutaneous devices have been deployed successfully in intractable epilepsy, significant depression, post-stroke rehabilitation, and the general geriatric population.
At this moment, treatments for insomnia include cognitive behavioral and pharmacological therapies, including benzodiazepines and non-benzodiazepines, as well as alternative therapies like acupuncture. However, the therapeutic use of medications for sleep disorders must be used cautiously, with obvious worries about the occurrence of side effects such as dependence and drowsiness.
In this review we are exploring the role of noninvasive vagal nerve stimulation as an add on therapeutic tool in insomnia patients.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-5®), American Psychiatric Association Publishing, Washington, DC, USA, 2013
3. D. E. Ford and D. B. Kamerow, “Epidemiologic study of sleep disturbances and psychiatric disorders. an opportunity for prevention?” JAMA: :e Journal of the American Medical Association, vol. 262, no. 11, pp. 1479–1484, 1989
4. P. M. Kreuzer, M. Landgrebe, O. Husser et al., “Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study,” Frontiers in Psychiatry, vol. 3,
no. 70, pp. 1–7, 2012.
5. Yuan H., Silberstein S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I. Headache. 2016;56:71–78. doi: 10.1111/head.12647.
6. Ramani R. Vagus nerve stimulation therapy for seizures. J. Neurosurg. Anesthesiol. 2008;20:29–35. doi: 10.1097/ANA.0b013e31815b7df1.
7. Aaronson S.T., Conway C.R. Vagus Nerve Stimulation: Changing the Paradigm for Chronic Severe Depression? Psychiatr. Clin. N. Am. 2018;41:409–418. doi: 10.1016/j.psc.2018.05.001
8. 8 He W., Li M., Zuo L., Wang M., Jiang L., Shan H., Han X., Yang K., Han X. Acupuncture for treatment of insomnia: An overview of systematic reviews. Complement. Ther. Med. 2019;42:407–416. doi: 10.1016/j.ctim.2018.12.020
9. Lee M.H., Choi J.-W., Lee J., Shin A., Oh S.M., Jung S.J., Lee Y.J. Trends in prescriptions for sedative-hypnotics among Korean adults: A nationwide prescription database study for 2011–2015. Soc. Psychiatry Psychiatr. Epidemiol. 2019;54:477–484. doi: 10.1007/s00127-018-1615-x
10. De Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 2016;594:5791–5815. doi: 10.1113/JP271538. [Doi] [PMC free article] [PubMed] [Google Scholar]
11. Luo M., Qu X., Li S., Zhao J., Zhao Y., Jiao Y., Rong P. Transcutaneous vagus nerve stimulation for primary insomnia and affective disorder: A report of 35 cases. Zhongguo Zhen Jiu. 2017;37:269–273. doi: 10.13703/j.0255-2930.2017.03.013. [Doi] [PubMed] [Google Scholar]
12. Galli R., Bonanni E., Pizzanelli C., Maestri M., Lutzemberger L., Giorgi F.S., Iudice A., Murri L. Daytime vigilance and quality of life in epileptic patients treated with vagus nerve stimulation. Epilepsy Behav. 2003;4:185–191. doi: 10.1016/S1525-5050(03)00003-9.
13. Kim W.-H., Kim B.-S., Kim S.-K., Chang S.-M., Lee D.-W., Cho M.-J., Bae J.-N. Prevalence of insomnia and associated factors in a community sample of elderly individuals in South Korea. Int. Psychogeriatr. 2013;25:1729–1737. doi: 10.1017/S1041610213000677. [Doi] [PubMed] [Google Scholar][Ref list]
14. Winkelman J.W. CLINICAL PRACTICE. Insomnia Disorder. N. Engl. J. Med. 2015;373:1437–1444. doi: 10.1056/NEJMcp1412740. [Doi] [PubMed] [Google Scholar]
15. Ge L., Guyatt G., Tian J., Pan B., Chang Y., Chen Y., Li H., Zhang J., Li Y., Ling J., et al. Insomnia and risk of mortality from all-cause, cardiovascular disease, and cancer: Systematic review and meta-analysis of prospective cohort studies. Sleep Med. Rev. 2019;48:101215. doi: 10.1016/j.smrv.2019.101215. [Doi] [PubMed] [Google Scholar]
16. .Sen A., Opdahl S., Strand L.B., Vatten L.J., Laugsand L.E., Janszky I. Insomnia and the Risk of Breast Cancer: The HUNT Study. Psychosom. Med. 2017;79:461–468. doi: 10.1097/PSY.0000000000000417. [Doi] [PubMed] [Google Scholar]
17. Lee M.H., Choi J.-W., Lee J., Shin A., Oh S.M., Jung S.J., Lee Y.J. Trends in prescriptions for sedative-hypnotics among Korean adults: A nationwide prescription database study for 2011–2015. Soc. Psychiatry Psychiatr. Epidemiol. 2019;54:477–484. doi: 10.1007/s00127-018-1615-x. [Doi] [PubMed] [Google Scholar][Ref list]
18. He W., Li M., Zuo L., Wang M., Jiang L., Shan H., Han X., Yang K., Han X. Acupuncture for treatment of insomnia: An overview of systematic reviews. Complement. Ther. Med. 2019;42:407–416. doi: 10.1016/j.ctim.2018.12.020. [Doi] [PubMed] [Google Scholar][Ref list]
19. Yuan H., Silberstein S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I. Headache. 2016;56:71–78. doi: 10.1111/head.12647. [Doi] [PubMed] [Google Scholar]
20. Ramani R. Vagus nerve stimulation therapy for seizures. J. Neurosurg. Anesthesiol. 2008;20:29–35. doi: 10.1097/ANA.0b013e31815b7df1. [Doi] [PubMed] [Google Scholar][Ref list]
21. Aaronson S.T., Conway C.R. Vagus Nerve Stimulation: Changing the Paradigm for Chronic Severe Depression? Psychiatr. Clin. N. Am. 2018;41:409–418. doi: 10.1016/j.psc.2018.05.001. [Doi] [PubMed] [Google Scholar][Ref list]
22. Nano MM, Fonseca P, Vullings R, Aarts RM. Measures of cardiovascular autonomic activity in insomnia disorder: a systematic review. PLoS One. 2017;12:e0186716. doi: 10.1371/journal.pone.0186716. [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
23. Blasi A, Jo J, Valladares E, Morgan BJ, Skatrud JB, Khoo MC. Cardiovascular variability after arousal from sleep: time-varying spectral analysis. J Appl Physiol (1985) 2003;95:1394–1404. doi: 10.1152/japplphysiol.01095.2002. [Doi] [PubMed] [Google Scholar][Ref list]
24. Carter JR, Durocher JJ, Larson RA, DellaValla JP, Yang H. Sympathetic neural responses to 24-hour sleep deprivation in humans: sex differences. Am J Physiol Heart Circ Physiol. 2012;302:H1991–H1997. doi: 10.1152/ajpheart.01132.2011. [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
25. Jarrin DC, Ivers H, Lamy M, Chen IY, Harvey AG, Morin CM. Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration. J Sleep Res. 2018;27:e12663. doi: 10.1111/jsr.12663. [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
26. Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ. Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry. 2004;161:2126–2128. doi: 10.1176/appi.ajp.161.11.2126. [Doi] [PubMed] [Google Scholar][Ref list]
27. Ford GA, Hoffman BB, Blaschke TF. Effect of temazepam on blood pressure regulation in healthy elderly subjects. Br J Clin Pharmacol. 1990;29:61–67. doi: 10.1111/j.1365-2125.1990.tb03603.x. [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
28. Nardone R, Sebastianelli L, Versace V, Brigo F, Golaszewski S, Pucks-Faes E, et al. Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med. 2020;71:113–121. doi: 10.1016/j.sleep.2020.01.028. [Doi] [PubMed] [Google Scholar]
29. 71.Du X, Xu W, Li X, Zhou D, Han C. Sleep disorder in drug addiction: treatment with transcranial magnetic stimulation. Front Psychiatry. 2019;10:848. doi: 10.3389/fpsyt.2019.00848. [Doi] [PMC free article] [PubMed] [Google Scholar]
30. Mobius H, Welkoborsky HJ. Vagus nerve stimulation for conservative therapy-refractive epilepsy and depression. Laryngorhinootologie. (2022) 101(S 01):S114–43. 10.1055/a-1660-5591 [Doi] [PubMed] [Google Scholar][Ref list]
31. Babar N, Giedrimiene D. Updates on baroreflex activation therapy and vagus nerve stimulation for treatment of heart failure with reduced ejection fraction. Cardiol Res. (2022) 13:11–7. 10.14740/cr1330 [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
32. Kamel LY, Xiong W, Gott BM, Kumar A, Conway CR. Vagus nerve stimulation: an update on a novel treatment for treatment-resistant depression. J Neurol Sci. (2022) 434:120171. 10.1016/j.jns.2022.120171 [Doi] [PubMed] [Google Scholar][Ref list]
33. Fornaro R, Actis GC, Caviglia GP, Pitoni D, Ribaldone DG. Inflammatory bowel disease: role of vagus nerve stimulation. J Clin Med. (2022) 11:5690. 10.3390/jcm11195690 [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
34. Komisaruk B.R., Frangos E. Vagus nerve afferent stimulation: Projection into the brain, reflexivephysiological, perceptual, and behavioral responses, and clinical relevance. Auton. Neurosci. 2022;237:102908. doi: 10.1016/j.autneu.2021.102908. [Doi] [PubMed] [Google Scholar][Ref list]
35. Miglis M.G. Autonomic dysfunction in primary sleep disorders. Sleep Med. 2016;19:40–49. doi: 10.1016/j.sleep.2015.10.001. [Doi] [PubMed] [Google Scholar][Ref list]
36. Luo M., Qu X., Li S., Zhao J., Zhao Y., Jiao Y., Rong P. Transcutaneous vagus nerve stimulation for primary insomnia and affective disorder: A report of 35 cases. Zhongguo Zhen Jiu. 2017;37:269–273. doi: 10.13703/j.0255-2930.2017.03.013. [Doi] [PubMed] [Google Scholar][Ref list]
37. Jackowska M., Koenig J., Vasendova V., Jandackova V.K. A two-week course of transcutaneous vagal nerve stimulation improves global sleep: Findings from a randomised trial in community-dwelling adults. Auton. Neurosci. 2022;240:102972. doi: 10.1016/j.autneu.2022.102972. [Doi] [PubMed] [Google Scholar][Ref list]
38. Ellrich J. Transcutaneous auricular vagus nerve stimulation. J Clin Neurophysiol. (2019) 36:437–42. 10.1097/WNP.0000000000000576 [Doi] [PubMed] [Google Scholar][Ref list]
39. Zhang Y, Liu J, Li H, Yan Z, Liu X, Cao J, et al. Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin. (2019) 24:101971. 10.1016/j.nicl.2019.101971 [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
40. Briand MM, Gosseries O, Staumont B, Laureys S, Thibaut A. transcutaneous auricular vagal nerve stimulation and disorders of consciousness: a hypothesis for mechanisms of action. Front Neurol. (2020) 11:933. 10.3389/fneur.2020.00933 [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]
41. Hulsey DR, Shedd CM, Sarker SF, Kilgard MP, Hays SA. Norepinephrine and serotonin are required for vagus nerve stimulation directed cortical plasticity. Exp Neurol. (2019) 320:112975. 10.1016/j.expneurol.2019.112975 [Doi] [PMC free article] [PubMed] [Google Scholar][Ref list]