Global variation in obesity of males and females is differentially associated with dietary macronutrient supply

Main Article Content

John Roger Speakman Chaoqun Niu

Abstract

Obesity prevalence varies widely across countries, as does the difference in prevalence between the sexes. To explore the relationship between obesity prevalence in female and male adults across different countries and country level food supply data, we used country level obesity prevalence data from the WHO, and food supply data from FAO to fit multiple regression models. In males both absolute fat and sugar energy supply were associated with obesity prevalence. However, in females only absolute sugar supply was significant. In both sexes relative fat and sugar energy supply (as a % of the overall energy) were significant predictors of obesity prevalence. Protein supply whether expressed as absolute or % of energy was unrelated to obesity prevalence in both sexes. Similarly, neither absolute nor relative carbohydrate energy supply was associated with obesity prevalence in either sex. Absolute fat and sugar energy supply were significant predictors of sex difference in obesity prevalence. These data suggest country level energy supplies of both sugar and fat play important roles in obesity prevalence globally, but to different extents in males and females.

Keywords: obesity prevalence, macronutrient composition, sex difference

Article Details

How to Cite
SPEAKMAN, John Roger; NIU, Chaoqun. Global variation in obesity of males and females is differentially associated with dietary macronutrient supply. Medical Research Archives, [S.l.], v. 13, n. 1, feb. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6137>. Date accessed: 10 feb. 2025. doi: https://doi.org/10.18103/mra.v13i1.6137.
Section
Research Articles

References

1. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. The Lancet. 2017/12/16/ 2017;390(10113):2627-2642. doi:https://doi.org/10.1016/S0140-6736(17)32129-3
2. Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. Apr 2012;95(4):989-994. doi:10.3945/ajcn.112.036350
3. Speakman JR, Elmquist JK. Obesity: an evolutionary context. Life Metab. Jul 26 2022;1(1):10-24. doi:10.1093/lifemeta/loac002
4. Haslam DW, James WPT. Obesity. Lancet. Oct 1 2005;366(9492):1197-1209. Doi 10.1016/S0140-6736(05)67483-1
5. Westerterp KR, Speakman JR. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. International Journal of Obesity. Aug 2008;32(8):1256-1263. doi:10.1038/ijo.2008.74
6. Sabia S, Cogranne P, van Hees VT, et al. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data. J Am Med Dir Assoc. May 1 2015;16(5)doi:ARTN 438.e7 10.1016/j.jamda.2015.01.086
7. Church TS, Thomas DM, Tudor-Locke C, et al. Trends over 5 Decades in US Occupation-Related Physical Activity and Their Associations with Obesity. Plos One. May 25 2011;6(5)doi:ARTN e19657 10.1371/journal.pone.0019657
8. Speakman JR, de Jong JMA, Sinha S, et al. Total daily energy expenditure has declined over the past three decades due to declining basal expenditure, not reduced activity expenditure. Nat Metab. Apr 2023;5(4):579-588. doi:10.1038/s42255-023-00782-2
9. Luke A, Dugas LR, Ebersole K, et al. Energy expenditure does not predict weight change in either Nigerian or African American women. Am J Clin Nutr. Jan 1 2009;89(1):169-176. doi:10.3945/ajcn.2008.26630
10. Tataranni PA, Harper IT, Snitker S, et al. Body weight gain in free-living Pima Indians:: effect of energy intake expenditure. International Journal of Obesity. Dec 2003;27(12):1578-1583. doi:10.1038/sj.ijo.0802469
11. 1Protsiv M, Ley C, Lankester J, Hastie T, Parsonnet J. Decreasing human body temperature in the United States since the industrial revolution. Elife. Jan 7 2020;9doi:ARTN e49555. 10.7554/eLife.49555
12. Bray GA, Paeratakul S, Popkin BM. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiology & Behavior. 2004/12/30/ 2004;83(4):549-555. doi:https://doi.org/10.1016/j.physbeh.2004.08.039
13. Simpson SJ, Raubenheimer D. Obesity: The protein leverage hypothesis. Review. Obesity Reviews. 2005;6(2):133-142. doi:10.1111/j.1467-789X.2005.00178.x
14. Hall KD. A review of the carbohydrate-insulin model of obesity (vol 71, pg 679, 2017). Eur J Clin Nutr. Jan 2018;72(1):183-183.
15. Ludwig DS, Ebbeling CB. The Carbohydrate-Insulin Model of Obesity Beyond "Calories In, Calories Out". Jama Intern Med. Aug 2018;178(8):1098-1103. doi:10.1001/jamainternmed.2018.2933
16. Hu S, Wang L, Yang D, et al. Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell Metabolism. 2018/09/04/ 2018;28(3):415-431.e4. doi:https://doi.org/10.1016/j.cmet.2018.06.010
17. Togo J, Hu S, Li M, Niu CQ, Speakman JR. Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid. Molecular Metabolism. Sep 2019;27:22-32. doi:10.1016/j.molmet.2019.05.010
18. Solon-Biet SM, McMahon AC, Ballard JWO, et al. The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism. Mar 4 2014;19(3):418-430. doi:10.1016/j.cmet.2014.02.009
19. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. Feb 12 2011;377(9765):557-567. doi:10.1016/S0140-6736(10)62037-5
20. Staiano AE, Katzmarzyk PT. Ethnic and sex differences in body fat and visceral and subcutaneous adiposity in children and adolescents. International Journal of Obesity. Oct 2012;36(10):1261-1269. doi:10.1038/ijo.2012.95
21. Monteiro CA, Moura EC, Conde WL, Popkin BM. Socioeconomic status and obesity in adult populations of developing countries: a review. Review. Bull World Health Organ. Dec 2004;82(12):940-946.
22. Lieberman HR, Fulgoni VL, III, Agarwal S, Pasiakos SM, Berryman CE. Protein intake is more stable than carbohydrate or fat intake across various US demographic groups and international populations. The American Journal of Clinical Nutrition. 2020;doi:10.1093/ajcn/nqaa044
23. Samaha FF, Iqbal N, Seshadri P, et al. A Low-Carbohydrate as Compared with a Low-Fat Diet in Severe Obesity. New England Journal of Medicine. 2003;348(21):2074-2081. doi:10.1056/NEJMoa022637
24. Hall Kevin D, Bemis T, Brychta R, et al. Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity. Cell Metabolism. 2015/09/01/ 2015;22(3):427-436. doi:https://doi.org/10.1016/j.cmet.2015.07.021
25. Ludwig DS, Friedman MI. Increasing Adiposity Consequence or Cause of Overeating? Jama-J Am Med Assoc. Jun 4 2014;311(21):2167-2168. doi:10.1001/jama.2014.4133
26. Taubes G. Good Calories Bad Calories. Alfred A.Knopf; 2007.
27. Westman EC, Feinman RD, Mavropoulos JC, et al. Low-carbohydrate nutrition and metabolism. The American Journal of Clinical Nutrition. 2007;86(2):276-284. doi:10.1093/ajcn/86.2.276
28. Teicholz N. The big fat surprise. Simon & Schuster; 2014.
29. Ludwig DS, Friedman MI. Increasing Adiposity: Consequence or Cause of Overeating? Jama. 2014;311(21):2167-2168. doi:10.1001/jama.2014.4133
30. Hall KD, Ayuketah A, Brychta R, et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. Jul 2 2019;30(1):226. doi:10.1016/j.cmet.2019.05.020
31. Dhurandhar NV, Schoeller D, Brown AW, et al. Energy balance measurement: when something is not better than nothing. Int J Obes (Lond). Jul 2015;39(7):1109-13. doi:10.1038/ijo.2014.199
32. Sasaki S, Horacsek M, Kesteloot H. An ecological study of the relationship between dietary fat intake and breast cancer mortality. Preventive medicine. Mar 1993;22(2):187-202. doi:10.1006/pmed.1993.1016
33. Senior AM, Nakagawa S, Raubenheimer D, Simpson SJ. Global associations between macronutrient supply and age-specific mortality. 2020;117(48):30824-30835. doi:10.1073/pnas.2015058117 %J Proceedings of the National Academy of Sciences
34. Moussavi N, Gavino V, Receveur O. Is obesity related to the type of dietary fatty acids? An ecological study. Public Health Nutr. Nov 2008;11(11):1149-55. doi:10.1017/S1368980007001541