The Development of SIBS and the PRESERFLO TM MicroShunt to Treat Advanced Glaucoma
Main Article Content
Abstract
Polyisobutylene-based biomaterials are elastomeric polymers specifically designed for long-term implant applications. These polymers, which are comprised of only carbon and hydrogen atoms, contain no cleavable groups and are highly purified. Their intrinsic methyl groups interact with tissue, minimizing foreign body reactions. The present review describes the development of a glaucoma micro-shunt made from one of these polymers, poly(styrene-block-isobutylene-block-styrene) (SIBS). This review also reports recent findings in patients implanted with these PRESERFLOTM MicroShunts.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Pinchuk L, Boden M, Bluestein D. In: SIBS in Medicine. Macromolecular Engineering: Design, Synthesis and Application of Polymers, edited by Lubnin and Erdodi, 2021. 978-0-12-821998-0, Chapter 11, Section V, Disruptive Medical Applications.
3. Boden M, Richard R, Schwarz MC, Kangas S, Huibregtse B, Barry JJ. In vitro and in vivo evaluation of the safety and stability of the TAXUS paclitaxel-eluting coronary stent. J Mater Sci Mater Med 2009;20(7):1553–1562. doi:10.1007/s10856-009-3705-5
4. Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of “biostable” polyurethanes. J Biomater Sci Polym Ed 1994;6(3):225-267. doi:10.1163/156856294X00347
5. Kennedy JP, Puskas JE, Kaszas G, Hager WG. Patent. Thermoplastic Elastomers of Isobutylene and Process of Preparation. US Patent No. 4946899. 7 August 1990.; 1990.
6. Storey RF, Chisholm BJ, Masse MA. Morphology and physical properties of poly(styrene-b-isobutylene-b-styrene) block copolymers. Polymer 1996;37(14):2925-2938.
7. Pinchuk L. Patent. Biostable Elastomeric Polymers Having Quaternary Carbons. US Patent No. 5741331. 21 April 1998.
8. Widder RA, Kühnrich P, Hild M, Rennings C, Szumniak A, Rossler GF. Intraocular degradation of XEN45 Gel Stent 3 years after its implantation. J Glaucoma 2019;28(12):e171–e173. Doi:10.1097/IJG.0000000000001364
9. Pinchuk L, Riss I, Batlle JF, et al. The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma. J Biomed Mater Res B Appl Biomater 2017;105(1):211-221. doi:10.1002/jbm.b.33525.
10. Acosta AC, Espana EM, Yamamoto H, et al. A newly designed glaucoma drainage implant made of poly(styrene-b-isobutylene-b-styrene): biocompatibility and function in normal rabbit eyes. Arch Ophthalmol 2006;124(12):1742-1749. doi:10.1001/archopht.124.12.1742
11. Ibarz Barberá M, Hernandez-Verdejo JL, Bragard J, et al. Evaluation of the ultrastructural and in vitro flow properties of the PRESERFLO MicroShunt. Transl Vis Sci Technol 2021;10(13):26. Doi:10.1167/tvst.10.13.26.
12. Fantes F, Acosta AC, Carraway J, et al. An independent GLP evaluation of a new glaucoma drain, the Midi. Invest Ophthalmol Vis Sci. 2006;47(13):3547.
13. Arrieta EA, Aly M, Parrish R, et al. Clinicopathologic correlations of poly-(styrene-b-isobutylene-b-styrene) glaucoma drainage devices of different internal diameters in rabbits. Ophthalmic Surg Lasers Imaging 2011;42(4):338-345. doi:10.3928/15428877-20110603-01
14. Pinchuk L, Riss I, Batlle JF, et al. The development of SIBS in the InnFocus MicroShunt®. In: Samples JR, Knepper PA, eds. Glaucoma Research and Clinical Advances 2018–2020. Amsterdam, The Netherlands: Kugler Publications; 2018.
15. Batlle JF, Fantes F, Riss I, et al. Three-year follow-up of a novel aqueous humor microshunt. J Glaucoma 2016;25(2):e58-e65. doi:10.1097/IJG.0000000000000368
16. Batlle JF, Corona A, Albuquerque R. Long-term results of the PRESERFLO MicroShunt in patients with primary open-angle glaucoma from a single-center nonrandomized study. J Glaucoma 2021;30(3):281–286. doi:10.1097/IJG.0000000000001734
17. Schlenker MB, Durr GM, Michaelov E, Ahmed IIK. Intermediate outcomes of a novel standalone ab externo SIBS Microshunt with mitomycin C. Am J Ophthalmol 2020;215:141–153. Doi:10.1016/j.ajo.2020.02.020
18. Pillunat KR, Herber R, Haase MA, Jamke M, Jasper CS, Pillunat LE. PRESERFLO™ MicroShunt versus trabeculectomy: first results on efficacy and safety. Acta Ophthalmol 2021;100(3):e779–e790. Doi:10.1111/aos.14968
19. Beckers HJM, Aptel F, Webers CAB, et al. Safety and effectiveness of the PRESERFLO MicroShunt in primary open-angle glaucoma: results from a 2-year multicenter study. Ophthalmol Glaucoma 2022;5(2):195–209. Doi:10.1016/j.ogla.2021.07.008
20. Baker ND, Barnebey HS, Moster MR, et al. Ab-externo MicroShunt versus trabeculectomy in primary open-angle glaucoma: one-year results from a 2-year randomized, multicenter study. Ophthalmology 2021;128(12):1710–1721. Doi:10.1016/j.ophtha.2021.05.023
21. Gambini G, Carla MM, Giannuzzi F, et al. PreserFlo® MicroShunt: an overview of this minimally invasive device for open-angle glaucoma. Vision (Basel) 2022;6(1):12. Doi:10.3390/vision6010012
22. Khawaja AP, Stalmans I, Aptel F, et al. Expert consensus on the use of the PRESERFLO MicroShunt device in the treatment of glaucoma: a modified delphi panel. Ophthalmol Ther 2022;11(5):1743–1766. Doi:10.1007/s40123-022-00529-4
23. Ranjit A, Patel B, Sherman TEJ, et al. Evaluating post-operative flare in glaucoma surgery: Miniject, Microshunt, Baerveldt tube, cataract & ECP and trabeculectomy. Invest Ophthalmol Vis Sci 2024;65(7):3522 (abstract).
24. Khan A, Khan AU. Comparing the safety and efficacy of Preserflo Microshunt implantation and trabeculectomy for glaucoma: A systematic review and meta‐analysis. Acta Ophthalmol 2024;102(4):e443–e451. Doi:10.1111/aos.16658
25. Panarelli JF, Moster MR, Garcia-Feijoo J, et al. Ab-externo MicroShunt versus trabeculectomy in primary open-angle glaucoma: two-year results from a randomized, multicenter study. Ophthalmology 2024;131(3):266–276. Doi:10.1016/j.ophtha.2023.09.023
26. Non-Inferiority Clinical Trials to Establish Effectiveness Guidance for Industry, U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), November 2016, Clinical/Medical
27. Gedde SJ, Chen PP, Heuer DK, et al. The Primary Tube Versus Trabeculectomy Study: Methodology of a multicenter randomized clinical trial comparing tube shunt surgery and trabeculectomy with mitomycin C. Ophthalmology 2018;125(5):774–781. Doi:10.1016/j.ophtha.2017.10.037.
28. World Glaucoma Association. In: Shaarawy T, ed. Guidelines on Design and Reporting of Glaucoma Surgical Trials. Amsterdam: Kugler; 2009. 22.
29. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000;130(4):429-440. doi:10.1016/S0002-9394(00)00538-9
30. Riss I, Batlle J, Pinchuk L, Kato YP, Weber BA, Parel JM. One-year results on the safety and efficacy of the InnFocus MicroShunt™ depending on placement and concentration of mitomycin C. J Fr Ophtalmol 2015;38(9):855–860. Doi:10.1016/j.jfo.2015.05.005
31. Beckers HJM, Kujovic-Aleksov S, Webers CAB, Riss I, Batlle J, Parel JM. One-year results of a three-site study of the MicroShunt®. Acta Ophthalmol 2017;95(S258):28-29. Doi:10.1111/aos.13419
32. Martínez-de-la-Casa JM, Saenz-Frances F, Morales-Fernandez L, et al. Clinical outcomes of combined Preserflo Microshunt implantation and cataract surgery in open-angle glaucoma patients. Sci Rep 2021;11(1):15600. Doi:10.1038/s41598-021-95217-x
33. Fili S, Kontopoulou K, Vastardis I, Perdikakis G, Kohlhaas M. PreserFlo MicroShunt versus trabeculectomy in patients with moderate to advanced open-angle glaucoma: 12-month follow-up of a single-center prospective study. Curēus 2022;14(8) e28288. Doi:10.7759/cureus.28288.
34. Van Lancker L, Saravanen A, Abu-Bakra M, et al. Clinical outcomes and cost analysis of PreserFlo versus trabeculectomy for glaucoma management in the United Kingdom. Ophthalmol Glaucoma 2023;6(4):342–357. Doi:10.1016/j.ogla.2022.11.006
35. Tanner A, Haddad F, Fajardo-Sanchez J, et al. One-year surgical outcomes of the PreserFlo MicroShunt in glaucoma: a multicentre analysis. Br J Ophthalmol 2023;107(8):1104–1111. Doi:10.1136/bjophthalmol-2021-320631
36. Abegao Pinto L, Sunaric Megevand G, Stalmans I, et al. European Glaucoma Society – A guide on surgical innovation for glaucoma. Br J Ophthalmol 2023;107(Suppl 1):1–114. Doi:10.1136/bjophthalmol-2023-egsguidelines
37. Kakizaki H, Takahashi Y, Nakano T, et al. Anatomy of Tenons capsule. Clin Exp Ophthalmol 2012;40(6):611–616. Doi:10.1111/j.1442-9071.2011.02745.x
38. Gubser PA, Pfeiffer V, Hug S, et al. PRESERFLO MicroShunt implantation versus trabeculectomy for primary open-angle glaucoma: a two-year follow-up study. Eye Vis (Lond) 2023;10(1):50. Doi:10.1186/s40662-023-00369-8.
39. Gedde SJ, Feuer WJ, Lim KS, et al. Treatment outcomes in the primary tube versus trabeculectomy study after 3 years of follow-up. Ophthalmology 2020;127(3):333–345. Doi:10.1016/j.ophtha.2019.10.002
40. De Francesco T, Armstrong JJ, Hussein IM, Costa MP, Ahmed IIK. Mitomycin 0.2 mg/ml versus mitomycin 0.4 mg/ml during the implantation of an ab externo polystyrene-isobutylene-styrene microshunt: a mega-analysis. Ophthalmol Glaucoma 2024;7(5):454-465. Doi:10.1016/j.ogla.2024.06.001
41. Dervos T, Gugleta K, Scholl HPN, Gatzioufas Z, Enz TJ. Single versus double PreserFlo MicroShunt implantation in glaucoma patients: a retrospective cohort study. Ophthalmic Res 2023;66(1):1362-1375. Doi:10.1159/000535276
42. Lupardi E, Laffi GL, Moramarco A, Barboni P, Fontana AL. Systematic Preserflo MicroShunt intraluminal stenting for hypotony prevention in highly myopic patients: a comparative study. J Clin Med 2023;12(4):1677. Doi:10.3390/jcm12041677
43. Ophthalmology Unit Researchers Provide New Data on Clinical Medicine (Systematic Preserflo MicroShunt Intraluminal Stenting for Hypotony Prevention in Highly Myopic Patients: A Comparative Study). NewsRX LLC, 2023. Print.
44. Aguilar-Munoa S, Tham YH, Barton K. A simple surgical solution for the treatment of persistent postoperative hypotony after PRESERFLO MicroShunt implantation. Eye (Lond) 2023;37(10):2126–2129. Doi:10.1038/s41433-022-02301-1.
45. Verma-Fuehring R, Dakroub M, Bamousa A, Kann G, Hillenkamp J, Kampik D. The use of intraluminal PRESERFLO stenting in avoiding early postoperative hypotony. Graefes Arch Clin Exp Ophthalmol 2024, in press. Doi:10.1007/s00417-024-06567-x
46. Lupardi E, Laffi GL, Ciardella A, Bartoni P, Fontana L. Ab-externo intraluminal stent for prolonged hypotony and choroidal detachment after Preserflo implantation. Eur J Ophthalmol 2023;33(5):NP63–NP66. Doi:10.1177/11206721221137166
47. Farrar N, Yan DB, Johnson M. Modeling the effects of glaucoma surgery on intraocular pressure. Exp Eye Res 2021;209:108620. Doi:10.1016/j.exer.2021.108620.
48. Lüke JN, Enders P, Lappa A, Dietlein TS. Revision of the PRESERFLO MicroShunt with ologen and mitomycin C. Ophthalmologie 2023;120(4):440-442. Doi:10.1007/s00347-023-01816-6
49. Vastardis I, Fili S, Perdikakis G, et al. Preliminary results of Preserflo Microshunt versus Preserflo Microshunt and ologen implantation. Eye Vis (Lond) 2021;8(1):33. Doi:10.1186/s40662-021-00253-3
50. Lai JSM, Poon ASY, Tham CCY, Lam DSC. Trabeculectomy with beta radiation: long-term follow-up. Ophthalmology 2003;110 (9):1822–1826. Doi:10.1016/S0161-6420(03)00561-X
51. Constable PH, Crowston JG, Occleston NL, Cordeiro MF, Khaw PT. Long term growth arrest of human Tenon’s fibroblasts following single applications of beta radiation. Br J Ophthalmol 1998;82(4):448–452. Doi:10.1136/bjo.82.4.448
52. El Mazar HM, Mandour SS, Mostafa MJ, Elmorsy OA. Augmented subscleral trabeculectomy with beta radiation and mitomycin C in Egyptian glaucoma patients. J Glaucoma 2019;28(7):637–642. Doi:10.1097/IJG.0000000000001255
53. van Mechelen RJS, Wolters JEJ, Fredrich S, et al. A degradable sustained-release drug delivery system for bleb-forming glaucoma surgery.” Macromol Biosci 2023;23(10):e2300075. Doi:10.1002/mabi.202300075
54. Ibarz Barberá M, Martinez-Galdon F, Caballero-Magro E, Rodriguez-Pinero M, Tana-Rivero P. Efficacy and safety of the Preserflo Microshunt with mitomycin C for the treatment of open angle glaucoma. J Glaucoma 2022;31(7):557–566. Doi:10.1097/IJG.0000000000002052
55. Fea AM, Laffi GL, Martini E, et al. Effectiveness of MicroShunt in patients with primary open-angle and pseudoexfoliative glaucoma: a retrospective European multicenter study. Ophthalmol Glaucoma 2022;5(2):210–218. Doi:10.1016/j.ogla.2021.08.005.
56. Seuthe AM, Erokhina M, Szurman P, Haus A. One-year results of the Preserflo MicroShunt implantation for refractory glaucoma. J Glaucoma 2023;32(5):414–419. Doi:10.1097/IJG.0000000000002178
57. Majoulet A, Scemla B, Hamard F, et al. Safety and efficacy of the Preserflo® Microshunt in refractory glaucoma: a one-year study. J Clin Med 2022;11(23):7086. Doi:10.3390/jcm11237086.
58. Triolo G, Wang J, Aguilar-Munoa S, Jayaram H, Barton K. Preserflo Microshunt implant for the treatment of refractory uveitic glaucoma: 36-month outcomes. Eye (Lond) 2023; 37(12) 2535–2541. Doi:10.1038/s41433-022-02368-w
59. Brandt JD. Use of a novel Microshunt in refractory childhood glaucoma: initial experience in a compassionate use/early access cohort. Am J Ophthalmol 2022;239:223–229. Doi:10.1016/j.ajo.2022.03.021
60. Burgos-Blasco B, Garcia-Feijoo J, Gines-Gallego C, et al. Efficacy and safety of the PreserFlo implant with nitomycin C in childhood glaucoma after previous failed glaucoma surgeries. Graefes Arch Clin Exp Ophthalmol 2023;261(5):1349–1357. Doi:10.1007/s00417-022-05939-5