Objective Measures at Different Stages of Cochlear Implantation: A Data Analysis
Main Article Content
Abstract
Objectives: The aim of this literature review was to summarize the results of scientific publications on the use of objective electrophysiological methods at different stages of cochlear implantation. The following aspects were evaluated: usefulness of electrocochleography and auditory evoked brainstem response registration to electrical stimulation for candidates’ selection for cochlear implantation; application of neural response telemetry, auditory evoked brainstem response registration and contralateral stapedial muscle reflexes to electrical stimulation as well as intracochlear electrocochleography to acoustic stimulation during implantation; the use of these methods and cortical auditory evoked potentials at the post-surgery stage for monitoring the cochlear implantation outcomes and controlling the speech processor adjustment.
Results: A search was conducted in PubMed and CINAHL databases up to August 2024 to locate articles related to the electrocochleography and auditory brainstem responses measured before, during and after cochlear implantation and cortical auditory evoked potentials – after cochlear implantation. The quality of studies was evaluated using the National Institute of Health (NIH) “Study Quality Assessment Tool for Case Series Studies”. A total 186 articles were included for the systematic review including 72 studies devoted to neural response telemetry, 29 – to electrically evoked auditory brainstem response registration, 41 – to intracochlear electrocochleography, 34 – to cortical auditory evoked responses in implanted patients and 10 – to contralateral stapedial muscle reflexes to electrical stimulation during and after cochlear implantation. Based on the analysis of the reviewed publications the optimal sets of objective measurements at different stages of cochlear implantation are recommended.
Conclusions: The battery of the objective audiological methods provides the electrically evoked auditory nerve compound action potential threshold determination at different electrodes of cochlear implant which can be used for the precise speech processor mapping, including investigation of amplitude growth function, excitation summation, spread of excitation and recovery function. The intracochlear electrocochleography to acoustic stimulation provides real-time feedback intraoperatively and has a potential clinical value to monitor the status of hearing preservation. Additional information could be obtained with estimation of auditory evoked brainstem response thresholds to electrical stimulation before, during and after implantation. The invaluable information for the estimation of cochlear implantation effectiveness can be obtained by registration of cortical auditory evoked potentials to acoustic and electrical stimulation which is based on the analysis of the P1-N1-P2 complex.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. van den Honert C, Stypulkowski PH. Physiologic properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear Res. 1984 Jun;14(3):225-243. doi: 10.1016/0378-5955(84)90052-2. PMID: 6480511.
3. Kileny PR, Kemink JL. Electrically evoked middle-latency auditory potentials in cochlear implant candidates. Arch Otolaryngol Head Neck Surg. 1987 Oct;113(10):1072-1077. doi: 10.1001/archotol.1987.01860100050020. PMID: 3620128.
4. Abbas PJ, Brown CJ. Electrically evoked brainstem potentials in cochlear implant patients with multi-electrode stimulation. Hear Res. 1988 Nov;36(2-3):153-162. doi: 10.1016/0378-5955(88)90057-3. PMID: 3209488.
5. Brown CJ, Abbas PJ. Gantz B. Electrically evoked whole-nerve action potentials: data from human cochlear implant users. J Acoust Soc Am. 1990 Sep;88(3):1385-1391. doi: 10.1121/1.399716. PMID: 2229673.
6. Kaga K, Kodera K, Hirota E, Tsuzuku T. P300 response to tones and speech sounds after cochlear implant: a case report. Laryngoscope. 1991 Aug;101(8):905-907. doi: 10.1288/00005537-199108000-00017. PMID: 1865742.
7. Kraus N, McGee T, Carrell T, Sharma A, Micco A, Nicol T. Speech-evoked cortical potentials in children. J Am Acad Audiol. 1993 Jul;4(4):238-248. PMID: 8369541.
8. Abbas PJ, Brown CJ, Shallop JK et al. Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear. 1999 Feb;20(1):45-59. doi: 10.1097/00003446-199902000-00005. PMID: 10037065.
9. Goldstein MH, Kiang NYS. Synchrony of neural activity in electric response evoked by transient acoustic stimuli. J Acoust Soc Am. 1958;30(2):107-114. doi: 10.1121/1.1909497.
10. Game C, Gibson W, Pauka C. Electrically evoked brainstem auditory potential. Ann Otol Rhinol. Laryngol. 1987;96(1-Suppl.):94-95. doi: 10.1177/00034894870960S150.
11. Miyamoto R, Brown D. Electrically evoked brainstem responses in cochlear implant recipients. Otolaryngol Head Neck Surg. 1987 Jan;96(1):34-38. doi: 10.1177/019459988709600106. PMID: 3118294.
12. Lai WK, Müller-Deile J, Dillier N et al. Measurement of the electrically evoked compound action potential via a neural response telemetry system. Ann Otol Rhinol Laryngol. 2002 May;111(5Pt1):407-414. doi:10.1177/000348940211100505.
13. He S, Teagle HFB, Buchman CA. The electrically evoked compound action potential: From laboratory to clinic. Front Neurosci. 2017 Jun 23;11:339. doi: 10.3389/fnins.2017.00339. PMID: 28690494; PMCID: PMC5481377.
14. Dziemba OC, Aristeidou A, Brill S. Slope of electrically evoked compound action potential amplitude growth function is site-dependent. Cochlear Implants International. 2020 May;22(3):136-147. https://doi.org/10.1080/14670100.2020.1853956. Epub 2020 Dec 9. PMID: 33297870.
15. Miyamoto RT, Kirk KI, Todd SL, Robbins AM, Osberger MJ. Speech perception skills of children with multichannel cochlear implants or hearing aids. Ann Otol Rhinol Laryngol. 1995 Sep;166 (Suppl.):334-337. PMID: 7668695.
16. Geers AE. Comparing implants with hearing aids in profoundly deaf children. Otolaryngol Head Neck Surg. 1997 Sep;117(3 Pt 1):150-154. doi: 10.1016/s0194-5998(97)70167-0. PMID: 9334758.
17. Skarzynski H, Lorens A, Matusiak M, Porowski M, Skarzynski PH, James CJ. Partial deafness treatment with the nucleus straight research array cochlear implant. Audiol Neurootol. 2012;17(2):82-91. doi: 10.1159/000329366. Epub 2011 Aug 12. PMID: 21846981.
18. Brown CJ, Abbas PJ, Fryauf-Bertschy H, Kelsay D, Gantz BJ. Intraoperative and postoperative electrically evoked auditory brain stem responses in Nucleus cochlear implant users: Implications for the fitting process. Ear Hear. 1994 Apr;15(2):168-176. doi: 10.1097/00003446-199404000-00006. PMID: 8020649.
19. Seo YJ, Kwak C, Kim S, Park YA, Park KH, Han W. Update on Bone-Con¬duction Auditory Brainstem Responses: A Review. J Audiol Otol. 2018; 22:53-58. https://doi.org/10.7874/jao.2017.00346.
20. Tavartkiladze G.A., Potalova L.A., Kruglov A.V., Belov O.A. Effect of stimulation parameters on electrically evoked auditory brainstem responses. Acta Otolaryngol (Stockh). 2000;120(2): 214-217. https://doi.org/10.1080/000164800750000946.
21. Minami S, Kaga K. EABR of inner ear malformation and co¬chlear nerve deficiency after cochlear implantation in children. Modern Otology Book Springer Link 2016. pp. 97-109. https://doi.org/10.1007/978-981-10-1400-0_8.
22. Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol. 2004 Dec;43(Suppl1):S16-21. PMID: 15732377.
23. Gibson WP, Sanli H. Auditory neuropathy: an update. Ear Hear. 2007 Apr;28(2 Suppl):102S-106S. doi: 10.1097/AUD.0b013e3180315392. PMID: 17496659.
24. Wesarg T, Arndt S, Aschendorff A et al. Intra- und postoperative elektrophysiologische Diagnostik. HNO. 2016; 65:308–320.
25. Wesarg T, Arndt S, Aschendorff A, Laszig R, Zirn S. Intraoperative audiologisch-technische Diagnostik bei der Cochleaimplantatversorgung. HNO. 2014; 62:725–734.
26. Hodges AV, Butts S, Dolan-Ash S, Balkany TJ. Using electrically evoked auditory reflex thresholds to fit the CLARION cochlear implant. Ann Otol Rhinol Laryngol. 1999 Apr;177 (Suppl.):64-68. doi: 10.1177/00034894991080s413. PMID: 10214804.
27. Mason S. Electrophysiologic and objective monitoring of the cochlear implant during surgery: implementation, audit and outcomes. Int J Audiol. 2004 Dec;43 (Suppl 1):S33-38. PMID: 15732380.
28. Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J. The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear Hear. 2000 Apr;21(2):151-163. doi: 10.1097/00003446-200004000-00009. PMID: 10777022.
29. Brown CJ. Clinical uses of electrically evoked auditory nerve and brainstem responses. Curr Opin Otolaryngol Head Neck Surg. 2003 Oct;11(5):383-387. doi: 10.1097/00020840-200310000-00013. PMID: 14502071.
30. Gordon KA, Papsin BC, Harrison RV. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear. 2004 Oct;25(5):447-463. doi: 10.1097/01.aud.0000146178.84065.b. PMID: 15599192.
31. Ponton C, Eggermont J. Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurotol. 2001 Nov-Dec;6(6):363-380. doi:10.1159/000046846. PMID: 11847464.
32. Sharma A, Dorman MF, Spahr AJ. A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear Hear. 2002 Dec;23(6):532-539. doi: 10.1097/00003446-200212000-00004.
33. Nada N, Kolkaila E, Schendzielorz P, El Mahallaw T. Electrically evoked auditory brainstem response in cochlear implantation: what you need to know (short review). Egypt J Otolaryngol. 2022;38(1):67. https://doi.org/10.1186/s43163-022-00259-1.
34. Wang L, Zhang Q, Wang Q, Dong M, Zeng Y. Functional evaluation of auditory system in patients with cochlear implant using electrically evoked auditory brainstem responses. Acoust Phys. 2009;55(6):857-865. https://doi.org/10.1134/S1063771009060207.
35. Campbell L, Kaicer A, Sly D, Iseli C et al. Intraoperative real-time cochlear response telemetry predicts hearing preservation in cochlear implantation. Otol Neurotol. 2016 Apr;37(4):332-338. doi: 10.1097/MAO.0000000000000972. PMID: 26859542.
36. Giardina CK, Brown KD, Adunka OF. Intracochlear Electrocochleography: Response patterns during cochlear implantation and hearing preservation. Ear Hear. 2019 Jul/Aug;40(4):833-848. doi: 10.1097/AUD.0000000000000659. PMID: 30335669; PMCID: PMC6534483.
37. Dalbert A, Sijgers L, Grosse J, Veraguth D, Roosli C, Huber A, Pfiffner F. Simultaneous Intra- and Extracochlear Electrocochleography During Electrode Insertion. Ear Hear. 2021 Mar/Apr;42(2):414-424. doi: 10.1097/AUD.0000000000000935. PMID: 32826509.
38. Patuzzi RB, Yates GK, Johnstone BM. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Hear Res. 1989;39:189-202. https://doi.org/10.1016/0378-5955(89)90090-7.
39. Kiefer J, Böhnke F, Adunka O, Arnold W. Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode. Hear Res. 2006 Nov;221(1-2):36-43. doi: 10.1016/j.heares.2006.07.013. Epub 2006 Sep 7. PMID: 16962268.
40. Weder S, Bester C, Collins A, Shaul C, Briggs RJ, O'Leary S. Toward a better understanding of electrocochleography: Analysis of real-time recordings. Ear Hear. 2020 Nov/Dec;41(6):1560-1567. doi: 10.1097/AUD.0000000000000871. PMID: 33136631.
41. O’Leary S, Briggs R, Gerard JM et al. Intraoperative Observational real-time electrocochleography as a predictor of hearing loss after cochlear implantation: 3 and 12 month outcomes. Otol Neurotol. 2020 Oct; 41(9):1222-1229. doi: 10.1097/MAO.0000000000002773.
42. Abbas PJ, Tejani VD, Scheperle RA, Brown CJ. Using neural response telemetry to monitor physiological responses to acoustic stimulation in hybrid cochlear implant users. Ear Hear. 2017 Jul/Aug;38(4):409-425. doi: 10.1097/AUD.0000000000000400. PMID: 28085738; PMCID: PMC5482777.
43. Campbell L, Kaicer A, Briggs R, O'Leary S. Cochlear response telemetry: intracochlear electrocochleography via cochlear implant neural response telemetry pilot study results. Otol Neurotol. 2015 Mar;36(3):399-405. doi: 10.1097/MAO.0000000000000678. PMID: 25473960.
44. Kim JS, Tejani VD, Abbas PJ, Brown CJ. Postoperative electrocochleography from hybrid cochlear implant users: An alternative analysis procedure. Hear Res. 2018 Dec;370:304-315. doi: 10.1016/j.heares.2018.10.016. Epub 2018 Oct 29. PMID: 30393003; PMCID: PMC6309996.
45. O'Connell BP, Holder JT, Dwyer RT et al. Intra- and postoperative electrocochleography may be predictive of final electrode position and postoperative hearing preservation. Front Neurosci. 2017 May 29;11:291. doi: 10.3389/fnins.2017.00291. PMID: 28611574; PMCID: PMC5447029.
46. Koka K, Riggs WJ, Dwyer R et al. Intra-cochlear electrocochleography during cochear implant electrode insertion is predictive of final scalar location. Otol Neurotol. 2018 Sep;39(8):e654-e659. doi: 10.1097/MAO.0000000000001906. PMID: 30113557; PMCID: PMC6097527.
47. Pelizzone M, Kasper A, Montandon P. Binaural interaction in a cochlear implant patient. Hear Res. 1990 Oct;48(3):287-290. doi: 10.1016/0378-5955(90)90069-2. PMID: 2272938.
48. Ponton CW, Don M. The mismatch negativity in cochlear implant users. Ear Hear. 1995 Feb;16(1):131-146. doi: 10.1097/00003446-199502000-00010. PMID: 7774766.
49. Groenen P, Makhdoum, M, van den Brink JL, Stollman MH, Snik AF, van den Broek P. The relation between electric auditory brain stem and cognitive responses and speech perception in cochlear implant users. Acta Otolaryngol (Stockh). 1996 Nov;116(6):785-790. doi: 10.3109/00016489609137926. PMID: 8973707.
50. Ponton CW, Don M, Eggermont JJ, Waring MD, Kwong B, Masuda A. Auditory system plasticity in children after long periods of complete deafness. NeuroReport. 1996 Dec 20;8(1):61-65. DOI: 10.1097/00001756-199612200-00013. PMID: 9051753.
51. Ponton CW, Eggermont JJ, Don M et al. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiol Neurotol. 2000 May-Aug;5(3-4):167-185. doi: 10.1159/000013878. PMID: 10859411.
52. Purdy SC, Kelly AS, Thorne PR. Auditory evoked potentials as measures of plasticity in humans. Audiol Neurotol. 2001 Jul-Aug;6(4):211-215. doi: 10.1159/000046835. PMID: 11694730.
53. Firszt JB, Chambers RD, Kraus N. Neurophysiology of cochlear implant users: II. Comparison among speech perception, dynamic range and physiological measures. Ear Hear. 2002b Dec;23(6): 516-531. doi: 10.1097/00003446-200212000-00003. PMID: 12476089.
54. Firszt JB, Chambers RD, Kraus N, Reeder RM. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1–P2 response. Ear Hear. 2002a Dec;23(6):502-515. DOI: 10.1097/00003446-200212000-00002. PMID: 12476088.
55. Maurer J, Collet L, Pelster H, Truy E, Gallégo S. Auditory late cortical response and speech recognition in Digisonic cochlear implant users. Laryngoscope. 2002 Dec;112(12):2220-2224. doi: 10.1097/00005537-200212000-00017. PMID: 12461344.
56. Gordon KA, Tanaka S, Papsin BC. Atypical cortical responses underlie poor speech perception in children using cochlear implants. Neuroreport. 2005 Dec 19;16(18):2041-2045. doi: 10.1097/00001756-200512190-00015. PMID: 16317351.
57. Korczak PA, Kurtzberg D, Stapells DR. Effects of sensorineural hearing loss and personal hearing AIDS on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear. 2005 Apr;26(2):165-185. doi: 10.1097/00003446-200504000-00005. PMID: 15809543.
58. Sharma A, Dorman M, Kral A. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res. 2005 Apr; 203(1-2):134-143. doi: 10.1016/j.heares.2004.12.010. Epub 2011 Feb 5. PMID: 21295863; PMCID: PMC3069302.
59. Chang HW, Dillon H, Carter L, van Du, B, Young ST. The relationship between cortical auditory evoked potential (CAEP) detection and estimated audibility in infants with sensorineural hearing loss. Int J Audiol. 2012 Sep;51(9):663-670. doi: 10.3109/14992027.2012.690076. Epub 2012 Jul 2. PMID: 22873205.
60. Glista D, Easwar V, Purcell DW, Scollie S. A pilot study on cortical auditory evoked potentials in children: Aided CAEPs reflect improved high-frequency audibility with frequency compression hearing aid Technology. Int J Otolaryngol. 2012;2012:982894. doi: 10.1155/2012/982894. Epub 2012 Oct 31. PMID: 23197983; PMCID: PMC3501956.
61. Deng JH, Du JH, Ma XR, Zhang PF. Application of auditory cortical evoked potentials for auditory assessment in people using auditory prosthesis. Exp Ther Med. 2019 Mar;17(3):1877-1883. doi: 10.3892/etm.2018.7140. Epub 2018 Dec 28. PMID: 30783463; PMCID: PMC6364192.
62. Távora-Vieira D, Wedekind A, Ffoulkes E, Voola M, Marino R. Cortical auditory evoked potential in cochlear implant users: An objective method to improve speech perception. PLoS One. 2022 Oct;17(10):e0274643. doi: 10.1371/journal.pone.0274643. PMID: 36206248; PMCID: PMC9543874.
63. Kelly AS, Purdy SC, Thorne PR. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin Neurophysiol. 2005 Jun;116(6):1235-1246. doi: 10.1016/j.clinph.2005.02.011. Epub 2005 Apr 26. PMID:15978485.
64. Abbas PJ, Brown CJ. Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway. Hear Res. 2015 Apr;322:67-76. doi: 10.1016/j.heares.2014.10.011. Epub 2014 Nov 4. PMID: 25445817; PMCID: PMC4380632.
65. Visram AS, Innes-Brown H, El-Deredy W, McKay CM. Cortical auditory evoked potentials as an objective measure of behavioral thresholds in cochlear implant users. Hear Res. Sep;327:35-42. doi: 10.1016/j.heares.2015.04.012. Epub 2015 May 7. PMID: 25959269.
66. Kiang NYS, Moxon EC. Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol. 1972 Oct;81(5):714-730. doi: 10.1177/000348947208100513. PMID: 4651114.
67. Kim JR., Abbas PJ, Brown CJ, Etler CP, O’Brien S, Kim LS. The relationship between electrically evoked compound action potential and speech perception: a study in cochlear implant users with short electrode array. Otol Neurotol. 2010 Sept;31(7):1041-1048. doi: 10.1097/MAO.0b013e3181ec1d92. PMID: 20634770; PMCID: PMC2933654.
68. Kirby AE, Middlebrooks JC. Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains. JARO. 2012;13:67-80. doi: 10.1007/s10162-011-0293-0.
69. Garadat SN, Zwolan TA, Pfingst BE. Across-site patterns of modulation detection: relation to speech recognition. J Acoust Soc Am. 2012;131(5):4030-4041. doi: 10.1121/1.3701879. Erratum in: J Acoust Soc Am. 2013 Jul;134(1):715. PMID: 22559376; PMCID: PMC3356319.
70. Garadat SN, Zwolan, TA, Pfingst BE. Using temporal modulation sensitivity to select stimulation sites for processor MAPs in cochlear implant listeners. Audiol Neurotol. 2013;18(4):247-260. doi: 10.1159/000351302. Epub 2013 Jul 20. PMID: 23881208; PMCID: PMC3874548.
71. Long C.J, Holden TA, McClelland GH et al. Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolarynogol. 2014 Apr;15(2):293-304. doi: 10.1007/s10162-013-0437-5. Epub 2014 Jan 30. PMID: 24477546; PMCID: PMC3946134.
72. Pfingst BE, Hughes AP, Colesa DJ, Watts MM, Strahl SB, Raphael Y. Insertion trauma and recovery of function after cochlear implantation: evidence from objective functional measures Hear Res. 2015b Dec; 330(Pta A):98-105. doi: 10.1016/j.heares.2015.07.010. Epub 2015 Jul 21. PMID: 26209185; PMCID: PMC4674315.
73. Pfingst BE, Zhou N, Colesa DJ et al. Importance of cochlear health for implant function. Hear Res. 2015a Apr;322:77-88. doi: 10.1016/j.heares.2014.09.009. Epub 2014 Sep 28. PMID: 25261772; PMCID: PMC4377117.
74. Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J. The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear Hear. 2000 Apr;21(2):151-163. doi: 10.1097/00003446-200004000-00009. PMID: 10777022.
75. Hughes ML, Brown CJ, Abbas PJ, Wolaver AA, Gervais JP. Comparison of ECAP thresholds with MAP levels in the nucleus 24 cochlear implant: data from children. Ear Hear. 2000 Apr;21(2):164-174. doi: 10.1097/00003446-200004000-00010. PMID: 10777023.
76. Thai-Van H, Chanal JM, Coudert C, Veuillet E, Truy E, Collet L. Relationship between NRT measurements and behavioral levels in children with the Nucleus 24 cochlear implant may change over time: preliminary report. Int J Pediatr Otorhinolaryngol. 2001 Apr 27;58(2):153-62. doi: 10.1016/s0165-5876(01)00426-8. PMID: 11278024.
77. Gordon KA, Ebinger KA, Gilden JE, Shapiro WH. Neural response telemetry in 12- and 24-month-old children. Ann Oto. Rhinol Laryngol. 2002 May;189(Suppl.):42-48. doi: 10.1177/00034894021110S509. PMID: 12018347.
78. Eisen MD, Franck KH. Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant users. Ear Hear. 2004 Dec;25(6):528-538. doi: 10.1097/00003446-200412000-00002. PMID: 15604914.
79. Botros A, Psarros C. Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness. Ear Hear. 2010 Jun;31(3):380-391. doi: 10.1097/AUD.0b013e3181 cb41aa. PMID: 20090532.
80. Hughes ML, Castioni EE, Goehring JL, Baudhuin JL. Temporal response properties of the auditory nerve: data from human cochlear-implant recipients. Hear Res. 2012 Mar;285(4):46-57. doi: 10.1016/j.heares.2012.01.010. PMID: 26655913; PMCID: PMC5065100.
81. Lee ER, Friedland DR, Runge CL. Recovery from forward masking in elderly cochlear implant users. Otol Neurotol. 2012 Apr;33(3):355-363. doi: 10.1097/MAO.0b013e318248ede5. PMID: 22410729.
82. He S, Abbas PJ, Doyle DV, McFayden TC, Mulherin S. Temporal response properties of the auditory nerve in children with auditory neuropathy spectrum disorder and implanted children with sensorineural hearing loss. Ear Hear. 2016 Jul-Aug;37(4):397-411. doi:10.1097/AUD.0000000000000254. PMID: 26655913; PMCID: PMC5065100.
83. Brown CJ, Abbas PJ, Gantz BJ. Preliminary experience with neural response telemetry in the nucleus CI24M cochlear implant. Am J Otol. 1998 May;19(3):320-327. PMID: 9596182.
84. Lai WK, Dillier N. A simple two-component model of the electrically evoked compound action potential in the human cochlea. Audiol Neurotol. 2000 Nov-Dec;5(6):333-345. doi: 10.1159/000013899. PMID: 11025333.
85. Cafarelli Dees D, Dillier N, Lai W et al. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system. Audiol. Neurotol. 2005 Mar-Apr;10(2):105-116. doi: 10.1159/000083366. Epub 2005 Jan 12. PMID: 15650302.
86. Miller CA, Hu N, Zhang F, Abbas PJ. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol. 2008 Mar;9(1):122-137. doi: 10.1007/s10162-007-0108-5. Epub 2008 Jan 17. PMID: 18204987; PMCID: PMC2536806.
87. Stypulkowski PH, van den Honert C. Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear Res. 1984 Jun;14(3):205-223. doi: 10.1016/0378-5955(84)90051-0. PMID: 6480510.
88. van de Heyning P, Arauz SL, Atlas M et al. Electrically evoked compound action potentials are different depending on the site of cochlear stimulation. Cochlear Implants Int. 2016 Nov; 17(6):251-262. doi: 10.1080/14670100.2016.1240427. Epub 2016 Nov 30. PMID: 27900916.
89. Brown CJ, Abbas PJ, Etlert CP, O'Brient S, Oleson JJ. Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. J Am Acad Audiol. 2010 Jan;21(1):5-15. doi: 10.3766/jaaa.21.1.2. PMID: 20085195; PMCID: PMC2881552.
90. Frijns JH, Briaire JJ, de Laat JA, Grote JJ. Initial evaluation of the Clarion CII cochlear implant: speech perception and neural response imaging. Ear Hear. 2002 Jun;23(3):184-97. doi: 10.1097/00003446-200206000-00003. PMID: 12072611.
91. Polak M, Hodges AV, King JE, Balkany TJ. Further prospective findings with compound action potentials from Nucleus 24 cochlear implants. Hear Res. 2004 Feb;188(1-2):104-116. doi: 10.1016/S0378-5955(03)00309-5.
92. Brill S, Müller J, Hagen R et al. Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array. Biomed Eng Online. 2009 Dec 16;16(8):40. doi: 10.1186/1475-925X-8-40. PMID: 20015362; PMCID: PMC2803480.
93. Tejani VD, Abbas PJ, Brown CJ. Relationship between peripheral and psychophysical measures of amplitude modulation detection in cochlear implant users. Ear Hear. 2017 Sep/Oct; 38:e268-e284. doi: 10.1097/AUD.0000000000000417. PMID: 28207576; PMCID: PMC5557710.
94. Kashio A, Tejani VD, Scheperle RA, Brown CJ, Abbas PJ. Exploring the source of neural responses of different latencies obtained from different recording electrodes in cochlear implant users. Audiol Neurotol. 2016;21(3):141-149. doi: 10.1159/000444739. Epub 2016 Apr 16. PMID: 27082667; PMCID: PMC4949124.
95. Macherey O, van Wieringen A, Carlyon RP, Deeks JM, Wouters J. Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate. J Assoc Res Otolaryngol. 2006 Sep;7(3):253-266. doi: 10.1007/s10162-006-0040-0. Epub 2006 May 20. PMID: 16715356; PMCID: PMC2504608.
96. Macherey O, Carlyon RP, van Wieringen A, Deeks JM, Wouters J. Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol. 2008 Jun; 9(2):241-251. doi: 10.1007/s10162-008-0112-4. Epub 2008 Feb 21. PMID: 18288537; PMCID: PMC2413083.
97. Undurraga JA, Carlyon RP, Macherey O, Wouters J, van Wieringen A. Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants. Hear Res. 2012 Aug;290(1-2):21-36. doi: 10.1016/j.heares.2012.05.003.
98. Undurraga JA, van Wieringen A, Carlyon RP, Macherey O, Wouters J. Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites Hear Res. 2010 Oct 1;269(1-2):146-161. doi: 10.1016/j.heares.2010.06.017. Epub 2010 Jul 1. PMID: 20600739.
99. Baudhuin JL, Hughes ML, Goehring JL. A Comparison of alternating polarity and forward masking artifact-reduction methods to resolve the electrically evoked compound action potential. Ear Hear. 2016 Jul-Aug;37(4):e247-55. doi: 10.1097/AUD.0000000000000288. PMID: 26928001; PMCID: PMC4925180.
100. Smoorenburg GF, Willeboer C, van Dijk JE. Speech perception in Nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurotol. 2002 Nov-Dec;7(6):335-347. doi: 10.1159/000066154. PMID: 12401965.
101. Thai-Van H, Truy E, Charasse B et al. Modeling the relationship between psychophysical perception and electrically evoked compound action potential threshold in young cochlear implant recipients: clinical implications for implant fitting. Clin Neurophysiol. 2004 Dec;115(12):2811-2824. doi: 10.1016/j.clinph.2004.06.024. PMID: 15546789.
102. McKay CM, Chandan K, Akhoun I, Siciliano C, Kluk K. Can ECAP measures be used for totally objective programming of cochlear implants? JARO. 2013 Dec;14(6):879-890. doi: 10.1007/s10162-013-0417-9. Epub 2013 Sep 19. PMID: 24048907; PMCID: PMC3825020.
103. McKay CM, Fewster L, Dawson P. A different approach to using neural response telemetry for automated cochlear implant processor programming. Ear Hear. 2005 Aug;26(4 Suppl.):38S-44S. doi: 10.1097/00003446-200508001-00006. PMID: 16082266.
104. Potts LG, Skinner MW, Gotter BD, Strube MJ, Brenner CA. Relation between neural response telemetry thresholds, T- and C-levels, and loudness judgements in 12 adult Nucleus 24 cochlear implant recipients. Ear Hear. 2007 Aug;28(4): 495-511. doi: 10.1097/AUD.0b013e31806dc16e. PMID: 17609612.
105. Shepherd RK, Clark GM, Black RC. Chronic electrical stimulation of the auditory nerve in cats: Physiological and histopathological results. Acta Otolaryngol (Stockh). 1983;95(Suppl 399):19-31. doi: 10.3109/00016488309105589. PMID: 6316712.
106. Yang H, Won JH, Choi I, Woo J. A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant. PLoS ONE. 2020 Aug 3;15(8):e0236784. https://doi.org/10.1371/journal.pone.0236784.
107. Snel-Bongers J, Briaire JJ, Vanpoucke FJ, Frijns JH. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation. Ear Hear. 2012 May-Jun;33(3):367-376. doi: 10.1097/AUD.0b013e318234efd5. PMID: 22048258.
108. Carlyon RP, Deeks JM. Combined neural and behavioral measures of temporal pitch perception in cochlear implant users. J Acoust Soc Am. 2015 Nov;138(5):2885-2905. doi: 10.1121/1.4934275. PMID: 26627764.
109. Scheperle RA, Abbas PJ. Peripheral and central contributions to cortical responses in cochlear implant users. Ear Hear. 2015a Jul-Aug; 36(4):430-440. doi: 10.1097/AUD.0000000000000143. PMID: 25658747; PMCID: PMC4478140.
110. Scheperle RA, Abbas PJ. Relationships among peripheral and central electrophysiological measures of spatial and spectral selectivity and speech perception in cochlear implant users. Ear Hear. 2015b Jul-Aug; 36(4):441-453. doi: 10.1097/AUD.0000000000000144. PMID: 25658746; PMCID: PMC4478147.
111. Pfingst BE. Effects of electrode configuration on cochlear implant modulation detection thresholds. J Acoust Soc Am. 2011 Jun;129(6):3908-3915. doi: 10.1121/1.3583543.
112. Spitzer ER, Hughes ML. Effect of Stimulus Polarity on Physiological Spread of Excitation in Cochlear Implants. J Am Acad Audiol. 2017 Oct;28(9):786-798. doi: 10.3766/jaaa.16144. PMID: 28972468; PMCID: PMC5657495.
113. Kopsch AC, Rahne T, Plontke SK, Wagner L. Influence of the spread of electric field on neural excitation in cochlear implant users: Transimpedance and spread of excitation measurements. Hear Res. 2022 Oct;424.108591, ISSN 0378-5955, doi: 10.1016/j.heares.2022.108591. Epub 2022 Jul 23. PMID: 35914395.
114. Franck KH, Norton SJ. Estimation of psychophysical levels using the electrically evoked compound action potential measured using the neural response telemetry capabilities of Cochlear Corporation's CI24M device. Ear Hear. 2001 Aug;22(4):289-299. doi: 10.1097/00003446-200108000-00004. PMID: 11527036.
115. Ji F, Liu K, Yang S. Clinical application of electrically evoked compound action potentials. J Otol. 2014;9(3):117-121. https://doi.org/10.1016/j.joto.2014.11.002.
116. de Vos JJ, Biesheuvel JD, Briaire JJ et al. Use of electrically evoked compound action potentials for cochlear implant fitting: A systematic review. Ear Hear. 2018 May/Jun;39(3):401-411. doi: 10.1097/AUD.0000000000000495. PMID: 28945656.
117. Leake PA, Hradek GT. Cochlear pathology of long-term neomycin induced deafness in cats. Hear Res. 1988;33:11-33. doi: 10.1016/0378-5955(88)90018-4.
118. Leake-Jones PA, Vivion MC, O'Reilly BF, Merzenich MM. Deaf animal models for studies of a multichannel cochlear prosthesis. Hear Res. 1982 Apr;891):225-246. https://doi.org/10.1016/0378-5955(82)90076-4. PMID: 3372368.
119. Nadol JB Jr. Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear Res. 1990 Nov;49(1-3):141-154. doi: 10.1016/0378-5955(90)90101-t. PMID: 2292494.
120. Suzuka Y, Schuknecht HF. Retrograde cochlear neuronal degeneration in human subjects. Acta Otolaryngol (Stockh). 1988;450 (Suppl 450):1-20. doi: 10.3109/00016488809098973. PMID: 3207012.
121. Cohen LT, Saunders E, Richardson LM. Spatial spread of neural excitation: comparison of compound action potential and forward-masking data in cochlear implant recipients. Int J Audiol. 2004;43(6):346-355. doi: 10.1080/14992020400050044. PMID: 15457817.
122. Grolman V, Maat A, Verdam F et al. Spread of excitation measurements for the detection of electrode array foldovers: A prospective study comparing 3-dimentional rotational x-ray and intraoperative spread of excitation measurements. Otol Neurotol. 2009 Jan;30(1):27-33. https://doi.org/10.1097/mao.0b013e31818f57ab PMID: 19108069
123. Zuniga MG, Rivas A, Hedley-Williams A et al. Tip fold-over in cochlear implantation: Case series. Otol Neurotol. 2017;38(2):199-206. doi: 10.1097/MAO.0000000000001283. PMID: 27918363; PMCID: PMC5584995.
124. Hall RD. Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear Res. 1990 Nov;45(1-3):123-136. doi: 10.1016/0378-5955(90)90188-u. PMID: 2292495.
125. Miller CA, Abbas PJ, Robinson BK. The use of long-duration current pulses to assess nerve survival. Hear Res. 1994 Jul;78(1):11-26. doi: 10.1016/0378-5955(94)90039-6. PMID: 7961173.
126. Brown CJ, Abbas PJ, Borland J, Bertschy MR. Electrically evoked whole nerve action potentials in Ineraid cochlear implant users: responses to different stimulating electrode configurations and comparison to psychophysical responses. J Speech Hear Res. 1996 Jun;39(3):453-467. doi: 10.1044/jshr.3903.453. PMID: 8783126.
127. Calloway NH, Fitzpatrick DC, Campbell AP et al. Intracochlear electrocochleography during cochlear implantation. Otol Neurotol. 2014 Sep;35(8):1451-1457. doi: 10.1097/MAO.0000000000000451. PMID: 24892369.
128. Campbell L, Bester C, Iseli C, Sly D, Dragovic A, Gummer AW, O'Leary S. Electrophysiological evidence of the basilar membrane travelling wave and frequency place coding of sound in cochlear implant recipients. Audiol Neurotol. 2017;22(3):180-189. doi: 10.1159/000478692. Epub 2017 Oct 31. PMID: 29084395.
129. Harris MS, Riggs WJ, Giardina CK et al. Patterns seen during electrode insertion using intracochlear electrocochleography obtained directly through a cochlear implant. Otol Neurotol. 2017a Dec;38(10):1415-1420. doi: 10.1097/MAO.0000000000001559. PMID: 28953607; PMCID: PMC5920552.
130. Harris MS, Riggs WJ, Koka K et al. Real-time intracochlear electrocochleography obtained directly through a cochlear implant. Otol Neurotol. 2017b Jul;38(6):e107-e113. doi: 10.1097/MAO.0000000000001425. PMID: 28498269.
131. Dalbert A, Pfiffner F, Hoesli M et al. Assessment of cochlear function during cochlear implantation by extra- and intracochlear electrocochleography. Front Neurosci. 2018 Jan 26; 12:18. doi: 10.3389/fnins.2018.00018. PMID: 29434534; PMCID: PMC5790789.
132. Riggs WJ, Dwyer RT, Holder JT et al. Intracochlear electrocochleography: Influence of scalar position of the cochlear implant electrode on postinsertion results. Otol Neurotol. 2019 Jun;40(5):e503-e510. doi: 10.1097/MAO.0000000000002202. PMID: 31083085; PMCID: PMC6530483.
133. Saoji AA, Patel NS, Carlson ML et al. Multi-frequency electrocochleography measurements can be used to monitor and optimize electrode placement during cochlear implant surgery. Otol Neurotol. 2019 Dec;40(10):1287-1291. doi: 10.1097/MAO.0000000000002406. PMID: 31644474.
134. Tejani VD, Abbas PJ, Brown CJ, Woo J. An improved method of obtaining electrocochleography recordings from Nucleus Hybrid cochlear implant users. Hear Res. 2019 Mar 1;373:113-120. https://doi.org/10.1016/j.heares.2019.01.002. Epub 2019 Jan 9. PMID: 30665078; PMCID: PMC6421572.
135. Tejani VD, Kim J-S, Oleson JJ et al. Residual hair cell responses in electric-acoustic stimulation cochlear implant users with complete loss of acoustic hearing after implantation. JARO. 2021 Apr;22(2):161-176. https://doi.org/10.1007/s10162-021-00785-4. Epub 2021 Feb 4. PMID: 33538936; PMCID: PMC7943691.
136. O'Leary S, Briggs R, Gerard JM et al. Intraoperative observational real-time electrocochleography as a predictor of hearing loss after cochlear implantation: 3- and 12-months outcomes. Otol Neurotol. 2020 Oct;41(9):1222-1229. doi: 10.1097/MAO.0000000000002773. PMID: 32925842; PMCID: PMC7497893.
137. Harris MS, Koka K, Riggs WJ et al. Can electrocochleography help preserve hearing after cochlear implantation with full electrode insertion? Otol Neurotol. 2022 Aug 1;43(7):789-796. doi: 10.1097/MAO.0000000000003588. Epub 2022 Jul 19. PMID: 35861647.
138. Lenarz T, Buechner A, Gantz B et al. Relationship between intraoperative electrocochleography and hearing preservation. Otol Neurotol. 2022 Jan1;43(1):e72-e78. doi: 10.1097/MAO.0000000000003403. PMID: 34739427; PMCID: PMC8671360.
139. Saoji AA, Graham MK, Adkins WJ et al. Relationship between intraoperative electrocochleography responses and immediate postoperative bone conduction thresholds in cochlear implantation. Otol Neurotol. 2022 Sep 1;43(8):880-887. doi: 10.1097/MAO.0000000000003620. PMID: 35970166.
140. Tejani VD, Kim JS, Etler CP et al. Longitudinal electrocochleography as an objective measure of serial behavioral audiometry in electro-acoustic stimulation patients. Ear Hear. 2023 Sep-Oct 01;44(5):1014-1028. doi: 10.1097/AUD.0000000000001342. Epub 2023 Feb 15. PMID: 36790447; PMCID: PMC10425573.
141. Bester CW, Campbell L, Dragovic A, Collins A, O'Leary SJ. Characterizing Electrocochleography in cochlear implant recipients with residual low-frequency hearing. Front Neurosci. 2017 Mar 23;11:141. doi: 10.3389/fnins.2017.00141. PMID: 28386212; PMCID: PMC5363175.
142. Koka K, Saoji AA, Litvak LM. Electrocochleography in cochlear implant recipients with residual hearing: Comparison with audiometric thresholds. Ear Hear. 2017 May/Jun;38(3):e161-e167. doi: 10.1097/AUD.0000000000000385. PMID: 27879487.
143. O'Connell BP, Holder JT, Dwyer RT et al. Intra- and postoperative electrocochleography may be predictive of final electrode position and postoperative hearing preservation. Front Neurosci. 2017 May 29;11:291. doi: 10.3389/fnins.2017.00291. PMID: 28611574; PMCID: PMC5447029.
144. Fontenot TE, Giardina CK, Dillon M et al. Residual cochlear function in adults and children receiving cochlear implants: Correlations with speech perception outcomes. Ear Hear. 2019 May/Jun;40(3):577-591. https://doi.org/10.1097/AUD.0000000000000630. Erratum in: Ear Hear. 2019 Jul/Aug;40(4):1034. doi: 10.1097/AUD.0000000000000757. PMID: 30169463; PMCID: PMC6533622.
145. Canfarotta MW, O'Connell BP, Giardin CK et al. Relationship between electrocochleography, angular insertion depth, and cochlear implant speech perception outcomes. Ear Hear. 2021 July/Aug; 42(4): 941-948. https://doi.org/10.1097/AUD.0000000000000985. PMID: 33369942; PMCID: PMC8217403.
146. Buechner A, Bardt M, Haumann S, Geissler G, Salcher R, Lenarz T. Clinical experiences with intraoperative electrocochleography in cochlear implant recipients and its potential to reduce insertion trauma and improve postoperative hearing preservation. PLoS One. 2022 Apr 22;17(4):e0266077. doi: 10.1371/journal.pone.0266077. PMID: 35452461; PMCID: PMC9032378.
147. Walia A, Shew MA, Kallogjeri D et al. Electrocochleography and cognition are important predictors of speech perception outcomes in noise for cochlear implant recipients. Sci Rep. 2022 Feb 23;12(1):3083. doi: 10.1038/s41598-022-07175-7. PMID: 35197556; PMCID: PMC8866505.
148. Kim JS. Clinical applications of intracochlear electrocochleography in cochlear implant users with residual acoustic hearing. J Audiol Otol. 2024 Apr;28(2):100-106. DOI: 10.7874/jao.2024.00129. Epub 2024 Apr 10. PMID: 38695055; PMCID: PMC11065546.
149. Dalbert A, Pfiffner F, Röösli C et al. Extra- and intracochlear electrocochleography in cochlear implant recipients. Audiol Neurotol. 2015;20(5):339-348. doi: 10.1159/000438742. PMID: 26340649.
150. Koka K, Litvak LM. Feasibility of using electrocochleography for objective estimation of electro-acoustic interactions in cochlear implant recipients with residual hearing. Front Neurosci. 2017 June 15;11:337. doi:10.3389/fnins.2017.00337. PMID: 28674482; PMCID: PMC5475389.
151. Koka K, Saoji AA, Attias J, Litvak LM. An objective estimation of air-bone-gap in cochlear implant recipients with residual hearing using electrocochleography. Front Neurosci. 2017 Apr 18;11:210. doi: 10.3389/fnins.2017.00210. PMID: 28458630; PMCID: PMC5394163.
152. Rader T, Döge J, Adel Y, Weissgerber T, Baumann U. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hear Res. 2016 Sep;339:94-103. doi: 10.1016/j.heares.2016.06.013. Epub 2016 Jul 1. Erratum in: Hear Res. 2017; 354:109. doi: 10.1016/j.heares.2017.09.009. PMID: 27374479.
153. Kral A, Tillein J. Brain plasticity under cochlear implant stimulation. Adv Otorhinolaryngol. 2006;64:89-108. doi: 10.1159/000094647. PMID: 16891838.
154. Kiang, NYS. Stimulus coding in the auditory nerve and cochlear nucleus. Acta Otolaryngol (Stockh). 1965;59(2-6):186–200. https://doi.org/10.3109/00016486509124552.
155. Thai-Van H, Cozma S, Boutitie F, Disant F, Truy E, Collet L. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clin Neurophysiol. 2007 Mar;118(3):676-689. doi: 10.1016/j.clinph.2006.11.010. Epub 2007 Jan 16. PMID: 17223382.
156. Hodges AV, Ruth RA, Lambert PR, Balkany TJ. Electric auditory brain-stem responses in Nucleus multichannel cochlear implant users. Arch Otolaryngol Head Neck Surg. 1994 Oct;120(10):1093-1099. doi:10.1001/archotol.1994.01880340037007. PMID: 7917192.
157. Abdelsalam NMS, Afifi PO. Electric auditory brainstem response (E-ABR) in cochlear implant children: Effect of age at implantation and duration of implant use. Egyptian Journal of Ear, Nose, Throat and Allied Sciences. 2015;16(2):145-150. ISSN 2090-0740, https://doi.org/10.1016/j.ejenta.2015.03.001.
158. Wackym PA, Firszt JB, Gaggl W, Runge-Samuelson CL, Reeder RM, Raulie JC. Electrophysiologic effects of placing cochlear implant electrodes in a perimodiolar position in young children. Laryngoscope. 2004 Jan;114(1):71- 77. https://doi.org/10.1097/00005537-200401000-00012
159. Steel KP, Bock GR. Electrically-evoked responses in animals with progressive spiral ganglion degeneration. Hear Res. 1984 Jul;15(1):59-67.
doi: 10.1016/0378-5955(84)90225-9. PMID: 6541219.
160. Simmons FB, Smith L. Estimating nerve survival by electrical ABR. Ann NY Acad Sci. 1983; 405:422-423. doi: 10.1111/j.1749-6632.1983.tb31656.x. PMID: 6575664.
161. Simmons FB, Lusted HS, Meyers T, Shelton C. Electrically induced auditory brainstem response as a clinical tool in estimating nerve survival. Ann Otol Rhinol Laryngol. 1984 Jul-Aug;112(Suppl):97-100. doi: 10.1177/00034894840930s417. PMID: 6431890.
162. Propst EJ, Papsin BC, Stockley TL, Harrison RV, Gordon KA. Auditory responses in cochlear implant users with and without GJB2 deafness. Laryngoscope. 2006 Feb;116(2):317-327. doi: 10.1097/01.mlg.0000199401.26626.4b. PMID: 16467727.
163. Polterauer D, Mandruzzato G, Neuling M, Polak M, Müller J, Hempel J M. PromBERA: A preoperative eABR: An update. Current Directions in Biomedical Engineering. 2018;4(1): 563-565. doi: 10.1515/cdbme-2018-0135.
164. Polterauer D, Mandruzzato G, Neuling M, Polak M, Müller J, Hempel J M. Evaluation of auditory pathway excitability using a pre-operative trans-tympanic electrically evoked auditory brainstem response under local anesthesia in cochlear implant candidates. Int J Audiol. 2022 Dec;62(12):1176-1186. https://doi.org/10.1080/14992027.2022.2114024. Epub 2022 Aug 27. PMID: 36036176.
165. Lassaletta L, Polak M, Huesers J et al. Usefulness of electrical auditory brainstem responses to assess the functionality of the cochlear nerve using an intracochlear test electrode. Otol Neurotol. 2017 Dec;38(10):e413-e420.
doi:10.1097/MAO.0000000000001584. PMID: 29076926.
166. Medina MM, Polo R, Amilibia E et al. Diagnostic accuracy of intracochlear test electrode for acoustic nerve monitoring in vestibular schwannoma surgery. Ear Hear. 2020 Nov/Dec;41(6):1648-1659. doi: 10.1097/AUD.0000000000000883. PMID: 33136639.
167. Polterauer D, Mandruzzato G, Neuling M, Polak M, Müller J, Hempel JM. Intra-operative test electrode and electrical auditory brainstem response after preoperative assessment in cochlear implant candidacy: Comparison of electrical auditory brainstem response results by using an auditory nerve test electrode and system intra-operatively after pre-operatively objective promontory stimulation test to check integrity of the patient’s auditory pathway. Current Directions in Biomedical Engineering. 2023;9(1):725-728. https://doi.org/10.1515/cdbme-2023-1182.
168. Eilers RE, Cobo-Lewis AB, Vergara KC, Oller DK. Longitudinal speech perception performance of young children with cochlear implants and tactile aids plus hearing aids. Scand Audiol. 1997;47(Suppl):50-54. PMID: 9428045.
169. Attias J, HabibAllah S, Tarigoppula VSA et al. Cortical auditory evoked potentials recorded directly through the cochlear implant in cochlear implant recipients: a feasibility study. Ear Hear. 2022 Sep-Oct 01;43(5):1426-1436.
doi: 10.1097/AUD.0000000000001212. Epub 2022 Mar 3. PMID: 35245922.
170. Callejón-Leblic MA, Barrios-Romero MM, Kontides A, Sánchez-Gómez S, Beynon AJ. Electrically evoked auditory cortical responses elicited from individually fitted stimulation parameters in cochlear implant users. Int J Audiol. 2022 Jul;62(7):650-658. doi: 10.1080/14992027.2022.2062578. Epub 2022 Apr 28. PMID: 35477333.
171. Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B. Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol (Stockh). 1997 Mar;117(2):161-163. doi: 10.3109/00016489709117760. PMID: 9105439.
172. Sarankumar T, Arumugam SV, Goyal S, Chauhan N, Kumari A, Kameswaran M. Outcomes of cochlear implantation in auditory neuropathy spectrum disorder and the role of cortical auditory evoked potentials in benefit evaluation. Turk Arch Otorhinolaryngol. 2018 Mar;56(1):15-20. doi: 10.5152/tao.2017.2537. Epub 2018 Mar 1. PMID: 29988272; PMCID: PMC6017206.
173. Xiong S, Jiang L, Wang Y, Pan T, Ma F. The role of the P1 latency in auditory and speech performance evaluation in cochlear implanted children. Neural Plast. 2022 Apr 5; 2022:6894794. doi: 10.1155/2022/6894794. PMID: 35422857; PMCID: PMC9005387.
174. Battmer RD, Laszig R, Lehnhardt E. Electrically elicited stapedius reflex in cochlear implant patients. Ear Hear. 1990 Oct;11(5):370-374. doi: 10.1097/00003446-199010000-00008. PMID: 2262087.
175. Stephan K, Welzl-Müller K, Stiglbrunner H. Acoustic reflex in patients with cochlear implants (analog stimulation). Am J Otol. 1991;12(Suppl):48-51. PMID: 2069188.
176. Bresnihan M, Norman G, Scott F, Viani L. Measurement of comfort levels by means of electrical stapedial reflex in children. Arch Otolaryngol Head Neck Surg. 2001 Aug;127(8):963-966. doi: 10.1001/archotol.127.8.963. PMID: 11493206.
177. Allum JH, Greisiger R, Probst R. Relationship of intraoperative electrically evoked stapedius reflex thresholds to maximum comfortable loudness levels of children with cochlear implants. Int J Audiol. 2002 Mar;41(2):93-99. doi: 10.3109/14992020209090399. PMID: 12212861.
178. Pau HW, Zehlicke T, Sievert U, Schaudel D, Behrend D, Dahl R. Electromyographical recording of the electrically elicited stapedius reflex via a bipolar hook electrode. Otol Neurotol. 2009 Jan;30(1):1-6. doi: 10.1097/MAO.0b013e31818a0898. PMID: 18833019.
179. De Andrade KC, Leal MC, Muniz LF, Menezes PL, Albuquerque KM, Carnaúba AT. The importance of electrically evoked stapedial reflex in cochlear implant. Braz J Otorhinolaryngol. 2014;80(1):68-77. doi: 10.5935/1808-8694.20140014. PMID: 24626895; PMCID: PMC9443964.
180. De Andrade KCL, Muniz LF, Menezes PL, Neto SDSC, Carnaúba ATL, Leal MC. The value of electrically evoked stapedius reflex in determining the maximum comfort level of a cochlear implant. J Am Acad Audiol. 2018 Apr;29(4):292-299. doi: 10.3766/jaaa.16117. PMID: 29664723.
181. Clement RS, Carter PM, Kipke DR. Measuring the electrical stapedius reflex with stapedius muscle electromyogram recordings. Ann Biomed Eng. 2002 Feb;30(2):169-179. doi: 10.1114/1.1454132. PMID: 11962769.
182. Palani S, Alexander A, Sreenivasan A. Evaluation of the electrically-evoked stapedial reflex threshold in pediatric cochlear implant users with high-frequency probe tones. Int Arch Otorhinolaryngol. 2022 Feb 8;26(4):e566-e573. https://doi.org/ 10.1055/s-0042-1742332. PMID: 36405469; PMCID: PMC9668438.
183. Chai B, Holland ML, Camposeo EL, King K., Schvartz-Leyzac KC. Patient and device factors contributing to electrically evoked stapedial reflex thresholds in cochlear implanted adults. Audiol Neurotol. 2024 Feb;29(4):263-270. https://doi.org/10.1159/000535058. Epub 2024 Feb 9. PMID: 38342083; PMCID: PMC11305975.
184. Tavartkiladze GA, Bakhshinyan VV, Irwin C. Evaluation of new technology for intraoperative evoked compound action potential threshold measurements. Int J Audiol. 2015;54(5):347-352 doi: 10.3109/14992027.2014.973537.
185. Strenger T, Costian N, Ortolf E, Meyermann S, Zenk J. First Experiences with the Cochlear Nucleus SmartNav System. Laryngo-Rhino-Otologie 2023;102(S02):283-283. doi: 10.1055/s-0043-1767397.
186. Mushtaq F, Soulby A, Boyle P, Nunn T, Hartley DEH. Self-assessment of cochlear health by cochlear implant recipients. Front Neurol. 2022 Nov 16; 13:1042408. doi: 10.3389/fneur.2022.1042408