Commentary:- Vitamin D for reduction in Covid-19 risks for south Asian and other vitamin D deficient groups?

Main Article Content

Barbara J Boucher

Abstract

Over 7 million people died of COVID-19 globally in the current pandemic. Westernised countries reported increased COVID-19 illness with increased mortality rates in their South Asian and Black communities, while dark-skinned communities are more severely vitamin D deficient than others in westernised countries. Vitamin D has many proven mechanistic effects protective against infections and against the ‘acute respiratory distress syndrome’ that caused many COVID-19 deaths. This ‘commentary’, therefore, considers prospective evidence for reductions in COVID-19 risks with better vitamin D repletion; whether treating deficiency reduces COVID-19 risks, and discusses the many actions of vitamin D that could lead to such risk reductions.


 


Better pre-pandemic vitamin D status predicted ~50% COVID-19 risk reductions in each US state [in ~400,000 adults] and in health care staff. Governments generally resisted calls for higher vitamin D intakes [at 1000-2000 IU/day], quoting ‘lack of randomised controlled trials’, and fear of vitamin D ‘toxicity’, despite safe unsupervised population intake generally advised being ‘up to 4000 IU/day’. The UK has since recommended daily adult intakes of 400 IU/day, helpful, but too small to correct deficiency. American rules on ‘medical need’ meant banning treatment of COVID-19 with vitamin D so that the new mRNA vaccines could be used. More recently, trials treating COVID-19 illness with vitamin D3 [at 1,000,000 IU over 2 weeks] or with the vitamin D 25(OH)D metabolite, calcifediol [at ~2.0mg over 1 month] have shown significantly reduced Covid-19 severity and mortality. This information makes a cogent case for ensuring vitamin D sufficiency globally, most especially in dark skinned communities, as a cost-effective measure for reducing the risks from future COVID-19 variants and from the future health risks of newly emergent pathogenic viruses.

Article Details

How to Cite
BOUCHER, Barbara J. Commentary:- Vitamin D for reduction in Covid-19 risks for south Asian and other vitamin D deficient groups?. Medical Research Archives, [S.l.], v. 13, n. 1, jan. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6173>. Date accessed: 10 feb. 2025. doi: https://doi.org/10.18103/mra.v13i1.6173.
Section
Articles

References

1. Sabit H, Abdel-Ghany S, Abdallah MS, Abul-Maaty O, Khoder AI, Shoman NA, et al. Vitamin D: A key player in COVID-19 immunity and lessons from the pandemic to combat immune-evasive variants. Inflammopharmacology. 2024;32 (6):3631-3652. doi: 10.1007/s10787-024-01578-w.

2. Aldridge RW, Lewer D, Katikireddi SV, Mathur R, Pathak N, Burns R, et al. Black, Asian and Minority Ethnic groups in England are at increased risk of death from COVID-19: indirect standardisation of NHS mortality data. Wellcome Open Res. 2020; 24;5:88. doi: 10.12688/wellcomeopenres.15922.2.

3. Otu A, Ahinkorah BO, Ameyaw EK, Seidu AA, Yaya S. One country, two crises: what Covid-19 reveals about health inequalities among BAME communities in the United Kingdom and the sustainability of its health system? Int J Equity Health. 2020;9(1):189. doi: 10.1186/s12939-020-01307-z.

4. Salisu-Olatunji SO, Chudasama YV, Kaur N, Kayani Z, Odugbemi BA, Bolodeoku OE, et al. COVID-19-related morbidity and mortality in people with multiple long-term condition; a systematic review and meta-analysis of over 4 million people. J R Soc Med. 2024;117(10):336-351. doi: 10.1177/01410768241261507.

5. Ahmed MH. Black and Minority Ethnic (BAME) Alliance Against COVID-19: One Step Forward. J Racial Ethn Health Disparities. 2020;7 (5):822-828. doi: 10.1007/s40615-020-00837-0.

6. Sarkar SK, Morshed MM, Chakraborty T. COVID-19 Vulnerability Mapping of Asian Countries. Disaster Med Public Health Prep. 2022;8;17:e241. doi: 10.1017/dmp.2022.139.

7. Meltzer DO, Best TJ, Zhang H, Vokes T, Arora VM, Solway J. Association of Vitamin D Levels, Race/Ethnicity, and Clinical Characteristics With COVID-19 Test Results. JAMA Netw Open. 2021;4(3):e214117.
doi: 10.1001/jamanetworkopen.2021.4117. .

8. Faniyi AA, Lugg ST, Faustini SE, Webster C, Duffy JE, Hewison M, et al. Vitamin D status and seroconversion for COVID-19 in UK healthcare workers. Eur Respir J. 2021;57(4):2004234. doi: 10.1183/13993003.04234-2020.

9. Foster HME, Ho FK, Mair FS, Jani BD, Sattar N, Katikireddi SV, et al. The association between a lifestyle score, socioeconomic status, and COVID-19 outcomes within the UK Biobank cohort. BMC Infect Dis. 2022;22(1):273. doi: 10.1186/s12879-022-07132-9.

10. Raisi-Estabragh Z, McCracken C, Bethell MS, Cooper J, Cooper C, Caulfield MJ et al. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J Public Health (Oxf). 2020;42(3):451-460. doi: 10.1093/pubmed/fdaa095.

11. Ma, Zhou T, Heianza Y, Qi L. Habitual use of vitamin D supplements and risk of coronavirus disease 2019 (COVID-19) infection: a prospective study in UK Biobank. Am J Clin Nutr. 2021;113(5): 1275-1281. doi: 10.1093/ajcn/nqaa381.

12. Prentice A. Nutritional rickets around the world. J Steroid Biochem Mol Biol. 2013;136:201-6. doi: 10.1016/j.jsbmb.2012.11.018.

13. Cashman KD. Global differences in vitamin D status and dietary intake: a review of the data. Endocr Connect. 2022;11;11(1):e210282. doi: 10.1530/EC-21-0282

14. Boucher BJ. Vitamin D deficiency in British South Asians, a persistent but avoidable problem associated with many health risks (including rickets, T2DM, CVD, COVID-19 and pregnancy complications): the case for correcting this deficiency. Endocr Connect. 2022;11(12):e220234. doi: 10.1530/EC-22-0234.

15. Roth DE, Abrams SA, Aloia J, Bergeron G, Bourassa MW, Brown KH, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann N Y Acad Sci. 2018;1430(1):44-79. doi: 10.1111/nyas.13968.

16. Jayawardena R, Jeyakumar DT, Francis TV, Misra A. Impact of the vitamin D deficiency on COVID-19 infection and mortality in Asian countries. Diabetes Metab Syndr. 2021;15(3):757-764. doi: 10.1016/j.dsx.2021.03.006.

17. Sooriyaarachchi P, Jeyakumar DT, King N, Jayawardena R. Impact of vitamin D deficiency on COVID-19. Clin Nutr ESPEN. 2021;44:372-378. doi: 10.1016/j.clnesp.2021.05.011.

18. Ames BN, Grant WB, Willett WC. Does the High Prevalence of Vitamin D Deficiency in African Americans Contribute to Health Disparities? Nutrients. 2021;13(2):499. doi: 10.3390/nu13020499.

19. Faniyi AA, Lugg ST, Faustini SE, Webster C, Duffy JE, Hewison M, et al. Genetic polymorphisms, vitamin D binding protein and vitamin D deficiency in COVID-19. Eur Respir J. 2021;6;57(5):2100653. doi: 10.1183/13993003.00653-2021.

20. Lugg ST, Mackay WR, Faniyi AA, Faustini SE, Webster C, Duffy JE, et al. Vitamin D status: a U-shaped relationship for SARS-CoV-2 seropositivity in UK healthcare workers. BMJ Open Respir Res. 2022;9(1):e001258. doi: 10.1136/bmjresp-2022-001258.

21. Pardhan S, Smith L, Sapkota RP. Vitamin D Deficiency as an Important Biomarker for the Increased Risk of Coronavirus (COVID-19) in People From Black and Asian Ethnic Minority Groups. Front Public Health. 2021;22;8:613462. doi: 10.3389/fpubh.2020.613462.

22. Hastie CE, Mackay DF, Ho F, Celis-Morales CA, Katikireddi SV, Niedzwiedz CL, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab Syndr. 2020;14(4):561-565.
doi: 10.1016/j.dsx.2020.04.050. Erratum in: Diabetes Metab Syndr. 2020;4(5):1315-1316.
doi: 10.1016/j.dsx.2020.07.021.

23. Elkhwanky MS, Kummu O, Piltonen TT, Laru J, Morin-Papunen L, Mutikainen M, et al. Obesity Represses CYP2R1, the Vitamin D 25-Hydroxylase, in the Liver and Extrahepatic Tissues. JBMR Plus. 2020;4(11):e10397. doi: 10.1002/jbm4.10397.

24. Davies G, Mazess D, Benskin L. Serious Statistical Flaws in Hastie, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank study. www.researchgate.net/publication/349427685

25. Grant WB, McDonnell SL. Letter in response to the article: Vitamin D concentrations and COVID-19 infection in UK biobank (Hastie et al.). Diabetes Metab Syndr. 2020;14(5):893-894. doi: 10.1016/j.dsx.2020.05.046.

26. Jude EB, Tentolouris N, Rastogi A, Yap MH, Pedrosa HC, Ling SF. Vitamin D prescribing practices among clinical practitioners during the COVID-19 pandemic. Health Sci Rep. 2022; 11;5 (4):e691. doi: 10.1002/hsr2.691.

27. Kwetkat A, Heppner HJ. Comorbidities in the Elderly and Their Possible Influence on Vaccine Response. Interdiscip Top Gerontol Geriatr. 2020; 43:73-85. doi: 10.1159/000504491.

28. Jolliffe DA, Faustini SE, Holt H, Perdek N, Maltby S, Talaei M, et al. Determinants of Antibody Responses to SARS-CoV-2 Vaccines: Population-Based Longitudinal Study (COVIDENCE UK). Vaccines (Basel). 2022;10(10):1601.
doi: 10.3390/vaccines10101601.

29. Ismailova A, White JH. Vitamin D, infections and immunity. Rev Endocr Metab Disord. 2022; 23(2):265-277. doi: 10.1007/s11154-021-09679-5.

30. Bilezikian JP, Bikle D, Hewison M, Lazaretti-Castro M, Formenti AM, Gupta A, et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur J Endocrinol. 2020;83(5):R133-R147. doi: 10.1530/EJE-20-0665.

31. Shah Alam M, Czajkowsky DM, Aminul Islam M, Ataur Rahman M. The role of vitamin D in reducing SARS-CoV-2 infection: An update. Int Immunopharmacol. 2021;97:107686. doi: 10.1016/j.intimp.2021.107686.

32. Beacon TH, Su RC, Lakowski TM, Delcuve GP, Davie JR. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life. 2020;72(11):2331-2354.
doi: 10.1002/iub.2379.

33. Wimalawansa SJ. Unveiling the Interplay-Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2. Biology (Basel). 2024;16;13(10):831. doi: 10.3390/biology13100831.

34. García-Escobar A, Vera-Vera S, Jurado-Román A, Jiménez-Valero S, Galeote G, Moreno R. Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules. 2022;5;12 (1):76. doi: 10.3390/biom12010076.

35. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89-90(1-5):387-92. doi: 10.1016/j.jsbmb.2004.03.004.

36. Farooqi R, Kooner JS, Zhang W. Associations between polygenic risk score and covid-19 susceptibility and severity across ethnic groups: UK Biobank analysis. BMC Med Genomics. 2023;30; 16(1):150. doi: 10.1186/s12920-023-01584-x.

37. Chen, J., Zhang, Y., Zhang, B. and Wang, Z. (2024), In Vitro Characterization of Inhibition Function of Calcifediol to the Protease Activity of SARS-COV-2 PLpro. Journal of Medical Virology, 96: e70085. https://doi.org/10.1002/jmv.70085

38. Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 2020;15(9):e0239252. doi: 10.1371/journal.pone.0239252.

39. Borsche L, Glauner B, von Mendel J. COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. Nutrients. 2021;13(10):3596. doi: 10.3390/nu13103596.

40. https://www.bbc.co.uk/news/health-55333063 not enough evidence say experts

41. ods.od.nih.gov/pdf/factsheets/VitaminD-Consumer.pdf#:~:text=Vitamin%20D%20Fact%20Sheet

42[a]. https://www.gov.uk/government/publications/sacn-vitamin-d-and-healt…
42[b]. https://www.gov.uk/government/publications/vitamin-d-for-vulnerable-

43. Boucher BJ. Discrepancies between current guidance from NICE on the treatment of vitamin D deficiency and the recommended daily amounts [RDAs] for its prevention in the UK. Expert Rev Endocrinol Metab. 2022;17(3):201-203. doi: 10.1080/17446651.2022.2067143.

44. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87(4):1080S-6S. doi: 10.1093/ajcn/87.4.1080S.

45. Domachowske JB, Understanding the regulatory pathways used to develop, evaluate, authorize and approve new drugs and vaccines in the United States. J Paed Inf Dis Soc. 2024;13 (Supp2:S93-S102. doi.org/10.1093/jpids/piae036

46. Wang X. The Potential of mRNA Vaccines to Fight Against Viruses. Viral Immunol. 2024;37 (8):383-391. doi: 10.1089/vim.2024.0047..

47. http://VideosofNewspaperReportShelvesClearedofVitaminDInCOVI…

48. Griffin G, Hewison M, Hopkin J, Kenny RA, Quinton R, Rhodes J, et al. Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: implications for COVID-19. Clin Med (Lond). 2021; 21(2):e144-e149. doi: 10.7861/clinmed.2021-0035.

49. Quesada-Gomez JM, Lopez-Miranda J, Entrenas-Castillo M, Casado-Díaz A, Nogues Y Solans X,. Vitamin D Endocrine System and COVID-19: Treatment with Calcifediol. Nutrients. 2022;14(13):2716. doi: 10.3390/nu14132716.

50. Sartini M, Del Puente F, Oliva M, Carbone A, Bobbio N, Schinca E, et al. Preventive Vitamin D Supplementation and Risk for COVID-19 Infection: A Systematic Review and Meta-Analysis. Nutrients. 2024;16(5):679. doi: 10.3390/nu16050679.

51. Bjørklund G, Drapak I, Zimenkovsky B, Shanaida M, Kobylinska L, Denefil O, et al. The Role of Vitamins, Magnesium, and Trace Elements in COVID-19 Treatment and Post-COVID-19 Rehabilitation: An Updated Overview. Curr Med Chem. 2024; doi: 10.2174/0109298673301578240515095227..

52. Entrenas-Castillo M, Entrenas-Costa LM, Pata MP, Gamez BJ, Muñoz-Corroto C, Gómez-Rebollo C, et al. Latent Class Analysis Reveals, in patient profiles, COVID-19-related better prognosis by calcifediol treatment than glucocorticoids. J Steroid Biochem Mol Biol. 2025;245:106609. doi: 10.1016/j.jsbmb.2024.106609. Epub 2024 Aug 31.

53. Qayyum S, Slominski RM, Raman C, Slominski AT. Novel CYP11A1-Derived Vitamin D and Lumisterol Biometabolites for the Management of COVID-19. Nutrients. 2022;11;14(22):4779. doi: 10.3390/nu14224779.

54. Gomaa AA, Abdel-Wadood YA, Thabet RH, Gomaa GA. Pharmacological evaluation of vitamin D in COVID-19 and long COVID-19: recent studies confirm clinical validation and highlight metformin to improve VDR sensitivity and efficacy. Inflammopharmacology. 2024;32(1):249-271. doi: 10.1007/s10787-023-01383-x

55. Kara M, Ekiz T, Ricci V, Kara Ö, Chang KV, Özçakar L. 'Scientific Strabismus' or two related pandemics: coronavirus disease and vitamin D deficiency. Br J Nutr. 2020;124(7):736-741. doi: 10.1017/S0007114520001749..

56. Vaughan M, Trott M, Sapkota R, Premi G, Roberts J, Ubhi J, et al. Changes in 25-hydroxyvitamin D levels post-vitamin D supplementation in people of Black and Asian ethnicities and its implications during COVID-19 pandemic: A systematic review. J Hum Nutr Diet. 2022;35(5):995-1005. doi: 10.1111/jhn.12949.

57. Chen J, Zhang Y, Zhang B, Wang Z. In Vitro Characterization of Inhibition Function of Calcifediol to the Protease Activity of SARS-COV-2 PLpro. J Med Virol. 2024;96(11):e70085. doi: 10.1002/jmv.70085.