Medical Ultrasound Imaging: Ultrafast Beamforming Algorithms for Real-Time and High-Quality Imaging
Main Article Content
Abstract
Medical ultrasound imaging is a prevalent diagnostic instrument in the field of medicine. Beamforming is a signal processing methodology employed to improve the efficacy of imaging systems, especially in medical ultrasound imaging. Ultrafast (UF) beamforming algorithms (BAs) are designed to improve the speed and efficiency of beamforming operations. Ultrasound imaging algorithms have been devised to enhance the quality and efficiency of ultrasound imaging. This article will provide an overview of the research on UF medical ultrasound algorithms. We will also explore some recent developments in the field of UF beamforming algorithms.
This article discusses the development and implementation of UF-BAs for medical ultrasound imaging. Traditional beamforming techniques are computationally intensive and limit the real-time imaging capability of ultrasound systems. The algorithms discussed in the article leverage modern parallel computing architectures to reduce processing time while maintaining image quality significantly. The article presents a detailed analysis of the algorithm's performance in processing time and image quality using simulated and accurate data. The article discusses how various UF-BAs can provide real-time high-quality images facilitating novel uses in medical ultrasound imaging. The prospective advantages of these algorithms for clinical use and future research trajectories are investigated as well.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. 2020-2021 Index IEEE Transactions on Biomedical Engineering Vol. 68. (2021). IEEE Transactions on Biomedical Engineering, 68(12), 3753–3840. https://doi.org/10.1109/tbme.2021.3136764
3. Bercoff, J., Montaldo, G., Loupas, T., Savery, D., Mézière, F., Fink, M., & Tanter, M. (2011b). Ultrafast compound doppler imaging: providing full blood flow characterization. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 58(1), 134–147. https://doi.org/10.1109/tuffc.2011.1780
4. Demi, L. (2018). Practical Guide to Ultrasound Beam Forming: Beam Pattern and Image Reconstruction Analysis. Applied Sciences, 8(9), 1544. https://doi.org/10.3390/app8091544
5. Sg, S., Sakthivel, R., & Kidav, J. U. (2019). Beamforming Algorithm Architectures for Medical Ultrasound. International Journal of Innovative Technology and Exploring Engineering, 8(12), 2452–2459. https://doi.org/10.35940/ijitee.l2556.1081219
6. Kidav, J. U., & G, S. S. (2021). An FPGA-Accelerated Parallel Digital Beamforming Core for Medical Ultrasound Sector Imaging. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 69(2), 553–564. https://doi.org/10.1109/tuffc.2021.3126578
7. Ibrahim, A., Hager, P. A., Bartolini, A., Angiolini, F., Arditi, M., Thiran, J., Benini, L., & De Micheli, G. (2017). Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging. IEEE Transactions on Biomedical Circuits and Systems, 11(4), 815–831. https://doi.org/10.1109/tbcas.2017.2673547
8. Schneider, F., Agarwal, A., Yoo, N. Y. M., Fukuoka, T., & Kim, N. Y. (2009). A Fully Programmable Computing Architecture for Medical Ultrasound Machines. IEEE Transactions on Information Technology in Biomedicine, 14(2), 538–540. https://doi.org/10.1109/titb.2009.2025653
9. Kidav, J. U., Sivamangai, N. M., Pillai, M. P., & M, S. R. (2018). Architecture and FPGA prototype of cycle stealing DMA array signal processor for ultrasound sector imaging systems. Microprocessors and Microsystems, 64, 53–72. https://doi.org/10.1016/j.micpro.2018.10.005
10. Karaman, M., Kolagasioglu, E., & Atalar, A. (1992). A VLSI receive beamformer for digital ultrasound imaging. IEEE International Conference on Acoustics, Speech, and Signal Processing, 657–660 vol.5. https://doi.org/10.1109/icassp.1992.226510
11. Thomenius, K. (2002). Evolution of ultrasound beamformers. Proc. IEEE Ultrason. Symp., 1996, Pp. 1615–1622., 2, 1615–1622. https://doi.org/10.1109/ultsym.1996.584398
12. Deylami, A. M., Jensen, J. A., & Asl, B. M. (2016). An improved minimum variance beamforming applied to plane-wave imaging in medical ultrasound. 2017 IEEE International Ultrasonics Symposium (IUS), 57, 1–4. https://doi.org/10.1109/ultsym.2016.7728895
13. Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418. https://doi.org/10.1109/proc.1969.7278
14. Jensen, J. A., Kortbek, J., Nikolov, S., Hemmsen, M. C., & Tomov, B. G. (2010). Implementing Synthetic Aperture Imaging in Medical Ultrasound: The Dual Stage Beamformer Approach. Synthetic Aperture Radar (EUSAR), 2010 8th European Conference On, 1–4. https://backend.orbit.dtu.dk/ws/files/4629826/paper%5B1%5D.pdf
15. Jorgen Arendt Jensen, Svetoslav Ivanov Nikolov, Kim Lokke Gammelmark, Morten Hogholm Pedersen, Synthetic aperture ultrasound imaging,Ultrasonics,Volume 44, Supplement,2006,Pagese5-e15,ISSN0041 624X, https://doi.org/10.1016/j.ultras.2006.07.017
16. Nili, V. A., Ezati, M., Yan, Y., Kavehvash, Z., & Mehrmohammadi, M. (2022). Field of View and Resolution Improvement in Coprime Sparse Synthetic Aperture Ultrasound Imaging. 2022 IEEE International Ultrasonics Symposium (IUS), 34, 1–4. https://doi.org/10.1109/ius54386.2022.9957167
17. Cheng, S., Yu, J., Guo, X., Ta, D., & Xu, K. (2022). Nonlinear Simulation of Modulation Pulse Sequencing for Contrast-Enhanced Ultrasound (CEUS) Imaging. 2022 IEEE International Ultrasonics Symposium (IUS), 1–4. https://doi.org/10.1109/ius54386.2022.9957327
18. Stanziola, A., Toulemonde, M., Yildiz, Y. O., Eckersley, R. J., & Tang, M. (2016). Ultrasound Imaging with Microbubbles [Life Sciences]. IEEE Signal Processing Magazine, 33(2), 111–117. https://doi.org/10.1109/msp.2015.2496914
19. Sridharan, A., Eisenbrey, J. R., Stanczak, M., Daecher, A., Machado, P., Wilkes, A., Sevrukov, A., Ojeda-Fournier, H., Mattrey, R. F., Wallace, K., & Forsberg, F. (2016). Contrast-enhanced nonlinear 3D ultrasound imaging of breast lesions in a clinical population. 2017 IEEE International Ultrasonics Symposium (IUS), 1–4. https://doi.org/10.1109/ultsym.2016.7728798
20. Moubark, A. M., Nie, L., Cowell, D. M. J., Ali, S. H. M., & Freear, S. (2019). A New Nonlinear Compounding Technique for Ultrasound B-mode Medical Imaging. 2017 IEEE International Ultrasonics Symposium (IUS). https://doi.org/10.1109/ultsym.2019.8926026
21. Cruza, J., Perez, M., Moreno, J., & Fritsch, C. (2015). Real Time Fast Ultrasound Imaging Technology and Possible Applications. Physics Procedia, 63, 79–84. https://doi.org/10.1016/j.phpro.2015.03.013
22. Chen, Y., Huang, Y., Li, C., Hou, Y. T., & Lou, W. (2020). Turbo-HB: A Novel Design and Implementation to Achieve Ultra-Fast Hybrid Beamforming. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. https://doi.org/10.1109/infocom41043.2020.9155337
23. Campbell, N. A., Samson, C. A., & Brown, J. A. (2019). An Ultrafast High-Frequency Hardware Beamformer for a Phased Array Endoscope. 2017 IEEE International Ultrasonics Symposium (IUS), 34, 1505–1508. https://doi.org/10.1109/ultsym.2019.8925578
24. Gennisson, J., Provost, J., Deffieux, T., Papadacci, C., Imbault, M., Pernot, M., & Tanter, M. (2015b). 4-D ultrafast shear-wave imaging. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 62(6), 1059–1065. https://doi.org/10.1109/tuffc.2014.006936
25. Zhang, X., Xu, Y., Wang, N., Jiao, Y., & Cui, Y. (2023). A Novel Approach to Tele-Ultrasound Imaging: Compressive Beamforming in Fourier Domain for Ultrafast Ultrasound Imaging. Applied Sciences, 13(5), 3127. https://doi.org/10.3390/app13053127
26. Chérin, E., Williams, R., Needles, A., Liu, G., White, C., Brown, A. S., Zhou, Y., & Foster, F. S. (2006). Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo. Ultrasound in Medicine & Biology, 32(5), 683–691. https://doi.org/10.1016/j.ultrasmedbio.2005.12.015
27. Da Silva Brilhante, D., Manjarres, J. C., Moreira, R., De Oliveira Veiga, L., De Rezende, J. F., Müller, F., Klautau, A., Mendes, L. L., & De Figueiredo, F. a. P. (2023). A Literature Survey on AI-Aided Beamforming and Beam Management for 5G and 6G Systems. Sensors, 23(9), 4359. https://doi.org/10.3390/s23094359
28. Kou, Z., You, Q., Kim, J., Dong, Z., Lowerison, M. R., Sekaran, N. V. C., Llano, D. A., Song, P., & Oelze, M. L. (2023). High-Level Synthesis Design of Scalable Ultrafast Ultrasound Beamformer With Single FPGA. IEEE Transactions on Biomedical Circuits and Systems, 17(3), 446–457. https://doi.org/10.1109/tbcas.2023.3267614
29. Bercoff, J., Tanter, M., & Fink, M. (2004). Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 51(4), 396–409. https://doi.org/10.1109/tuffc.2004.1295425
30. Udesen, J., Gran, F., Hansen, K., Jensen, J., Thomsen, C., & Nielsen, M. (2008). High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55(8), 1729–1743. https://doi.org/10.1109/tuffc.2008.858
31. Nicolet, F., Bujoreanu, D., Carcreff, E., Liebgott, H., Friboulet, D., & Nicolas, B. (2022). Simultaneous Coded Plane-Wave Imaging Using an Advanced Ultrasound Forward Model. Applied Sciences, 12(24), 12809. https://doi.org/10.3390/app122412809
32. Sandrin, L., Tanter, M., Catheline, S., & Fink, M. (2002). Shear modulus imaging with 2-D transient elastography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 49(4), 426–435. https://doi.org/10.1109/58.996560
33. Shattuck, D. P., Weinshenker, M. D., Smith, S. W., & Von Ramm, O. T. (1984). Explososcan: A parallel processing technique for high-speed ultrasound imaging with linear phased arrays. The Journal of the Acoustical Society of America, 75(4), 1273–1282. https://doi.org/10.1121/1.390734
34. O’Donnell, M., Skovoroda, A., Shapo, B., & Emelianov, S. (1994). Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 41(3), 314–325. https://doi.org/10.1109/58.285465
35. Zhang, H. K., Cheng, A., Bottenus, N., Guo, X., Trahey, G. E., & Boctor, E. M. (2016). Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation. Journal of Medical Imaging, 3(2), 027001. https://doi.org/10.1117/1.jmi.3.2.027001
36. Nili, V. A., Ezati, M., Yan, Y., Kavehvash, Z., & Mehrmohammadi, M. (2022b). Field of View and Resolution Improvement in Coprime Sparse Synthetic Aperture Ultrasound Imaging. 2022 IEEE International Ultrasonics Symposium (IUS), 34, 1–4. https://doi.org/10.1109/ius54386.2022.9957167
37. Nock, L., & Trahey, G. (1992). Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. I. Basic principles. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 39(4), 489–495. https://doi.org/10.1109/58.148539
38. Vayyeti, A., & Thittai, A. K. (2021). A Novel Spatio-Temporal DMAS (ST-DMAS) Beamforming for Sparse Synthetic Aperture Ultrasound Imaging: Initial Results. 2017 IEEE International Ultrasonics Symposium (IUS), 34, 1–3. https://doi.org/10.1109/ius52206.2021.9593327
39. Bera, D., Bosch, J. G., De Jong, N., & Vos, H. J. (2015). Synthetic Aperture Sequential Beamforming for phased array imaging. 2017 IEEE International Ultrasonics Symposium (IUS), 34, 1–4. https://doi.org/10.1109/ultsym.2015.0499
40. Trots, I., Nowicki, A., Lewandowski, M., & Tasinkevych, Y. (2011). Synthetic Aperture Method in Ultrasound Imaging. In InTech eBooks. https://doi.org/10.5772/15986
41. Badescu, E., Bujoreanu, D., Petrusca, L., Friboulet, D., & Liebgott, H. (2017). Multi-line transmission for 3D ultrasound imaging: An experimental study. 2017 IEEE International Ultrasonics Symposium (IUS), 1–4. https://doi.org/10.1109/ultsym.2017.8091612
42. Tong, L., Gao, H., & D’hooge, J. (2013). Multi-transmit beam forming for fast cardiac imaging-a simulation study. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 60(8), 1719–1731. https://doi.org/10.1109/tuffc.2013.2753
43. Shirasaka, T. (1989). Ultrasonic imaging apparatus. The Journal of the Acoustical Society of America, 86(5), 2055. https://doi.org/10.1121/1.398506
44. Thomenius, K. E., et al., & Silverstein, S. D. (2000). METHOD AND APPARATUS FOR HIGH FRAME-RATE HIGH-RESOLUTION ULTRASONIC IMAGE DATA ACQUISITION (Patent) [Patent]. In F. J. Jaworski & M. Snyder Douglas E. Stoner, United States Patent: Vol. 6,066,099. United States Patent. https://patentimages.storage.googleapis.com/ae/20/5b/f4d5171e83472f/US6066099.pdf
45. Drukarev, A., Konstantinides, K., & Seroussi, G. (1993). Beam transformation techniques for ultrasonic medical imaging. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 40(6), 717–726. https://doi.org/10.1109/58.248216
46. Tong, L., Ramalli, A., Jasaityte, R., Tortoli, P., & D’hooge, J. (2014). Multi-Transmit Beam Forming for Fast Cardiac Imaging—Experimental Validation and In Vivo Application. IEEE Transactions on Medical Imaging, 33(6), 1205–1219. https://doi.org/10.1109/tmi.2014.2302312
47. Perdios, D., Vonlanthen, M., Martinez, F., Arditi, M., & Thiran, J. (2020). CNN-Based Ultrasound Image Reconstruction for Ultrafast Displacement Tracking. IEEE Transactions on Medical Imaging, 40(3), 1078–1089. https://doi.org/10.1109/tmi.2020.3046700
48. Perdios, D., Vonlanthen, M., Besson, A., Martinez, F., Arditi, M., & Thiran, J. (2018). Deep Convolutional Neural Network for Ultrasound Image Enhancement. 2017 IEEE International Ultrasonics Symposium (IUS), 1–4. https://doi.org/10.1109/ultsym.2018.8580183
49. Gasse, M., Millioz, F., Roux, E., Garcia, D., Liebgott, H., & Friboulet, D. (2017). High-Quality Plane Wave Compounding Using Convolutional Neural Networks. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 64(10), 1637–1639. https://doi.org/10.1109/tuffc.2017.2736890
50. Luchies, A., & Byram, B. (2017). Deep neural networks for ultrasound beamforming. 2017 IEEE International Ultrasonics Symposium (IUS), 1–4. https://doi.org/10.1109/ultsym.2017.8092159
51. Besson, A., Perdios, D., Martinez, F., Chen, Z., Carrillo, R. E., Arditi, M., Wiaux, Y., & Thiran, J. (2017). Ultrafast Ultrasound Imaging as an Inverse Problem: Matrix-Free Sparse Image Reconstruction. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 65(3), 339–355. https://doi.org/10.1109/tuffc.2017.2768583
52. Khan, S., Huh, J., & Ye, J. C. (2020). Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 67(8), 1558–1572. https://doi.org/10.1109/tuffc.2020.2977202
53. Hasegawa, H., & De Korte, C. (2018). Special Issue on Ultrafast Ultrasound Imaging and Its Applications. Applied Sciences, 8(7), 1110. https://doi.org/10.3390/app8071110