Orthogen Autologous Conditioned Serum: An Update of the currently published Clinical Studies
Main Article Content
Abstract
Orthogen Autologous Conditioned Serum is a proven non-recombinant autobiological therapeutic for local treatment of pain, inflammation and tissue injury, functional both in humans and animals. Unlike other autobiologics, Orthogen-ACS stands out wielding the full spectrum of mediators released from all cells present in whole blood, the blood cell secretome. Through a process of extended coagulation of whole blood, Orthogen-ACS contains a unique composition of mediators including but not limited to growth factors, cytokines, lipid mediators, mitochondrial derived peptides and extracellular vesicles. Release of these mediators is triggered by the “tissue” blood when artificially confronted with the tasks Stop bleeding, Fend off pathogens and Initiate healing. The clinical effectiveness of local injection treatment with Orthogen-ACS has been shown in a multitude of clinical indications incl. osteoarthritis, radiculopathy, tendinopathy, muscle strain, ligament, meniscal tear, wound healing and others. This review reports on the 44 published human clinical studies dating from early 2000 until recent. Several of these publications report small case number; however, strong clinical evidence exists for knee osteoarthritis, followed by lower back pain and radiculopathy. This broad spectrum of indications suggests that ACS mode of action has profoundly regenerative and immune-modulating properties. In conclusion, ACS therapy is efficacious, safe, simple to process. Orthogen-ACS appears to activate a wide variety of pathways that converge on the attempt of tissue repair and regeneration.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Ippolito M, et al. Autologous conditioned serum for chronic pain in patients with osteoarthritis: A feasibility observational study. Br J pain. 2023;17(1) :103-111. DOI: 10.1177/20494637221134169. PMI D: 36815072
3. Serhan CN, et al. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008;3:279-312. DOI: 10.1146/annurev.pathmech dis.3.121806.151409. PMID: 18233953
4. Norris PC, et al. A cluster of immunoresolvents links coagulation to innate host defense in human blood. Sci Signal 2017; 10(490): eaan1471. DOI: 10.1126/scisignal.aan1471. PMID: 28765512.
5. Kim SJ, et al. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol. 2017 Nov 1;595(21):6613-6621. DOI: 10.1113/JP274472 . PMID: 28574175
6. Kanashiro A, et al. The role of neutrophils in neuro-immune modulation. Pharmacol Res. 2020 Jan;151:104580. DOI: 10.1016/j.phrs.2019.104580 . PMID: 31786317 and Orthogen internal measurements.
7. Nieuwland R, and Siljander. (2024). A beginner's guide to study extracellular vesicles in human blood plasma and serum. J Extracell Vesicles, 13, e12400 . DOI: 10.1002/jev2.12400. PMID: 38193375
8. Zhang X, et al. Comparison of serum and plasma as a source of blood extracellular vesicles: Increased levels of platelet-derived particles in serum extracellular vesicle fractions alter content profiles from plasma extracellular vesicle fractions. PLoS One. 2022 Jun 24;17(6):e0270634. DOI: 10.1 371/journal.pone.0270634. PMID: 35749554
9. Muraoka S, et al. Comprehensive proteomic profiling of plasma and serum phosphatidylserine-positive extracellular vesicles reveals tissue-specific proteins. iScience. 2022 Mar 1;25(4):104012. DOI: 10.1016/j.isci.2022.104012. PMID: 35340435
10. Shirokova L, et al. (2020). Intra-articular injections of a whole blood clot secretome, autologous conditioned serum, have superior clinical and biochemical efficacy over platelet-rich plasma and induce rejuvenation-associated changes of joint metabolism: A prospective, controlled open-label clinical study in chronic knee osteoarthritis. Rejuvenation Res 2020; 23(5):401-410. DOI: 10.1089/rej.2019.2263. PMID: 31847701
11. Blázquez R, et al. Conditioned Serum Enhances the Chondrogenic and Immunomodulatory Behavior of Mesenchymal Stem Cells. Front Pharmacol. 201 9;10(June):699. DOI: 10.3389/fphar.2019.00699. PMID: 31316380
12. Wright-Carpenter T, et al. Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med 2004; 25(8): 588-593. DOI: 10.1055/s-2004-821304. PMID: 15532001.
13. Parisien M, et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci Transl Med. 2022;14(644):2-5. DOI: 10.1126/scitranslmed.abj9 954. PMID: 35544595
14. Damjanov N and Zekovic A. Intra-articular autologous conditioned serum and triamcinolone injections in patients with knee osteoarthritis: a controlled, randomized, double-blind study. J Int Med Res 2023 51(10):3000605231203851. DOI: 10.1177/03000605231203851. PMID: 37818751
15. Meijer H, et al. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm Res 2003; 52: 404– 407. DOI: 10.1007/s00011-003-1197-1. PMID: 14520515.
16. Evans CH, et al. Autologous conditioned serum. Phys Med Rehabil Clin N Am 2016; 27: 893– 908. DOI: 10.1016/j.pmr.2016.06.003. PMID: 27788906.
17. Buchheit T, et al. Intrathecal administration of conditioned serum from different species resolves Chemotherapy-Induced neuropathic pain in mice via secretory exosomes. Brain Behav Immun. 2023; 111(April):298-311. DOI: 10.1016/j.bbi.2023.04.01 3. PMID: 37150265
18. Baselga García-Escudero J and Miguel Hernández Trillos P. Treatment of osteoarthritis of the knee with a combination of autologous conditioned serum and physiotherapy: A two-year observational study. PLoS One 2015;10(12): e0145551. DOI: 10.1371/journal.pone.0145551. PMID: 26709697.
19. Jansen T and Daiber A. Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Front Pharmacol 2012; 3:3 0. DOI: 10.3389/fphar.2012.00030. PMID: 22438843.
20. Gazzin S, et al. A novel perspective on the biology of bilirubin in health and disease. Trends Mol Med 2016; 22(9): 758-768. DOI: 10.1016/j .molmed.2016.07.004. PMID: 27515064.
21. Johnsen KB, et al. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta Rev Cancer 2019; 1871(1): 109-116. DOI: 10.1016/j.bb can.2018.11.006. PMID: 30528756.
22. Yang C and Robbins PD. Immunosuppressive exosomes: a new approach for treating arthritis. Int J Rheumatol 201yt2; 2012: 573528. DOI: 10. 1155/2012/573528. PMID: 22548070.
23. Baltzer AW, et al. Intraarticular treatment of osteoarthritis using autologous interleukin-1 receptor antagonist (IL-1Ra) conditioned serum. Dtsch Z Sportmed 2003; 54(6): 209–211. [GERMAN]
24. Motaal et al. Low-dose intra-articular autologous conditioned serum in treatment of primary knee osteoarthritis. Egypt Rheumatol Rehabil 2014; 41: 98–102. DOI: 10.4103/1110-161X.140523.
25. Rutgers M, et al. Osteoarthritis treatment using autologous conditioned serum after placebo. Acta Orthop 2015; 86(1): 114-118. DOI: 10.310 9/17453674.2014.950467. PMID: 25140983.
26. Öç Y et al. Autologous conditioned serum treatment in the knee osteoarthritis. Eu Clin Anal Med 2017; 5(1): 6-9. DOI: 10.4328/ECAM.105
27. Vitali M, et al. Autologous conditioned serum: clinical and functional results using a novel disease modifying agent for the management of knee osteoarthritis. J Drug Assess 2020; 9(1): 43-51. DOI: 10.1080/21556660.2020.1734009. PMID: 32284907.
28. Leone R, et al. Pain control and functional improvement in patients treated by autologous conditioned serum after failure of platelet rich plasma treatments in knee osteoarthritis. Transfus Med 2021; 31(5): 357-364. DOI: 10.1111/tme.1280 1. PMID: 34189774.
29. Tassara M, et al. Autologous conditioned serum (ACS) for intra-articular treatment in Osteoarthritis: Retrospective report of 28 cases. Transfus Apher Sci 2018; 57(4): 573-577. DOI: 10.1016/j.transci.2018.07.021. PMID: 30131208
30. Kılınç BE and Öç Y. Evaluation of the autologous conditioned serum in the treatment of osteoarthritis. Arch Clin Exp Med 2019; 4(2): 94-98. DOI: 10.25000/acem.569936.
31. Zarringam D, et al. Long-term effect of injection treatment for osteoarthritis in the knee by Orthokin autologous conditioned serum. Cartilage 2018; 9(2): 140-145. DOI: 10.1177/194760351774 3001. PMID: 29172669
32. Vitali M, et al. Clinical and functional evaluation of bone marrow aspirate concentrate vs autologous conditioned serum in the treatment of knee osteoarthritis. Acta Biomed 2022 93(5):e2022 222. DOI: 10.23750/abm.v93i5.12845. PMID: 36300237
33. Khurana A, et al. Efficacy of autologous conditioned serum (ACS), platelet-rich plasma (PRP), hyaluronic acid (HA) and steroid for early osteoarthritis knee: A comparative analysis. Indian J Orthop 2020; 55(Suppl 1): 217-227. DOI: 10.10 07/s43465-020-00274-5. PMID: 34122773.
34. Hussein M, et al. Bone marrow aspirate concentrate is more effective than hyaluronic acid and autologous conditioned serum in the treatment of knee osteoarthritis: A retrospective study of 505 consecutive patients. Appl Sci 2021; 11(7): 2932. DOI: 10.3390/app11072932.
35. Coşkun HS, et al. Platelet rich plasma versus autologous conditioned serum in osteoarthritis of the knee: Clinical results of a five-year retrospective study. Cureus 2022; 14(4): e24500. DOI: 10.7759/ cureus.24500. PMID: 35651374.
36. Hang NN, et al. Clinical Efficacy of Intra-Articular Injections of Autologous Conditioned Serum Compared with Dexamethasone for The Treatment of Bilateral Knee Osteoarthritis. A Retrospective Analysis. Orthopedics and Sports Medicine 2023; (6)3: 634-644. DOI: 10.32474/OS MOAJ.2023.06.000236
37. Auw Yang KG, et al. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. Osteoarthritis Cartilage 2008;16(4): 498-505. DOI: 10.1016/j.joca.2007.07.008. PMID: 17825587.
38. Baltzer AWA, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage 2009; 17(2): 152-160. DOI: 10.1016/j.joca.2008.06.014. PMID: 18674932
39. Hashemi M, et al. Comparison of the effect of intra-articular injection of autologous (Orthokine) interleukin-1 receptor antagonist (IL-1Ra) and hyaluronic acid in pain control of knee osteoarthritis. Novel Biomed 2019; 7(4): 210-217.
40. Hashemi M, et al. A comparative assessment of autologous conditioned serum and ozone for knee osteoarthritis treatment: Mid-term follow up. Novelty Biomed 2020; 8(1): 45–52. DOI: 10.220 37/nbm.v1i1.25891.
41. Pishgahi A, et al. Effect of dextrose prolotherapy, platelet rich plasma and autologous conditioned serum on knee osteoarthritis: A randomized clinical Trial. Iran J Allergy Asthma Immunol 2020; 19(3): 243-252. DOI: 10.18502/ija ai.v19i3.3452.
42. Godek P, et al. Evaluation of the Effectiveness of Orthokine Therapy: Retrospective Analysis of 1000 Cases. Ortop Traumatol Rehabil. 2020;22(2): 107-119. DOI: 10.5604/01.3001.0014.1167. PMID: 32468996
43. Noskov SM, et al. Efficiency of use of autologous activated serum in coxarthrosis. Ter Arkh 2012; 84(8): 33-36. [Russian] PMID: 22994086.
44. Baltzer AW, et al. A new treatment for hip osteoarthritis: clinical evidence for the efficacy of autologous conditioned serum. Orthop Rev 2013; 5(2): 59-64. DOI: 10.4081/or.2013.e13. PMID: 23888203.
45. Cortegiani A, et al. Use of autologous conditioned serum (ACS-Orthokine) for osteoarthrosic chronic pain and facet joint syndrome: a prospective observational study. Qeios 2022. DOI: 10.32388/2PSUHM.
46. Simon MJK, et al. Shoulder injections with autologous conditioned serum reduce pain and disability in glenohumeral osteoarthritis: longitudinal observational study. ANZ J Surg 2021; 91(4): 673-679. DOI: 10.1111/ans.16672. PMID: 33609074.
47. Alshammari HS, et al. Prevalence of Chronic Pain After Spinal Surgery: A Systematic Review and Meta-Analysis. Cureus. 2023 Jul 13;15(7):e41841. DOI: 10.7759/cureus.41841. PMID: 37575867.
48. Yang MMH, et al. Poor postoperative pain control is associated with poor long-term patient-reported outcomes after elective spine surgery: an observational cohort study. Spine J. 2024 Sep;24( 9):1615-1624. DOI: 10.1016/j.spinee.2024.04.019. PMID: 38685277.
49. Wylde V, et al. Systematic review of management of chronic pain after surgery, British Journal of Surgery, Volume 104, Issue 10, September 2017, Pages 1293–1306, DOI: 10.1002/bjs.10601
50. Becker C, et al. Efficacy of epidural perineural injections with autologous conditioned serum for lumbar radicular compression. An investigator-initiated, prospective, double-blind, reference-controlled study. Spine 2007;32(17):1803–1808. DOI: 10.109 7/BRS.0b013e3181076514. PMID: 17762286
51. Ravi Kumar HS, et al. Autologous conditioned serum as a novel alternative option in the treatment of unilateral lumbar radiculopathy: A prospective study. Asian Spine J 2015; 9(6): 916-22. DOI: 10.4184/asj.2015.9.6.916. PMID: 26713125.
52. Godek P. Use of autologous serum in treatment of lumbar radiculopathy pain. Pilot study. Ortop Traumatol Rehabil 2016; 18(1): 11–20. DOI: 10.5604/15093492.1198829. PMID: 27053305
53. Goni VG, et al. Efficacy of epidural perineural injection of autologous conditioned serum in unilateral cervical radiculopathy: A pilot study. Spine 2015; 40(16): E915-921. DOI: 10.1097/BR S.0000000000000924. PMID: 25893359.
54. Godek P, et al. Comparison of Analgesic Efficacy between Epidural and Perineural Administration of Autologous Conditioned Serum in the Conservative Treatment of Low Back Pain Due to Lumbar Degenerative Disc Disease: A Randomized, Open-Label, Controlled Clinical Trial. Brain Sci 2023; 13(5):749. DOI: 10.3390/brainsci 13050749. PMID: 37239221
55. Aghamohammadi D, et al. Autologous conditioned serum (Orthokine) injection for treatment of classical trigeminal neuralgia: results of a single-center case series. J Med Case Rep 2022; 16(1): 183. DOI: 10.1186/s13256-022-03393 -9. PMID: 35526052.
56. Von Wehren L, et al. Injection with autologous conditioned serum has better clinical results than eccentric training for chronic Achilles tendinopathy. KSSTA 2019; 27(9): 2744-2753. DOI: 10.1007/s001 67-019-05465-8. PMID: 30900032.
57. Alfredson H, et al. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998 May-Jun;26(3):360-6. DOI: 10.1177/036354659802600 30301. PMID: 9617396
58. Damjanov N, et al. The efficacy and safety of autologous conditioned serum (ACS) injections compared with betamethasone and placebo injections in the treatment of chronic shoulder joint pain due to supraspinatus tendinopathy: a prospective, randomized, double-blind, controlled study. Med Ultrason 2018; 20(3): 335-341. DOI: 10.11152/mu-1495. PMID: 30167587.
59. Ipek D, et al. Intratendinous injection of autologous conditioned serum for treatment of lateral epicondylitis of the elbow: A pilot study. Arch Iran Med 2022; 25(5): 319-323. DOI: 10.34172/aim.2022.52. PMID: 35943008.
60. Darabos N, et al. Intraarticular application of autologous conditioned serum (ACS) reduces bone tunnel widening after ACL reconstructive surgery in a randomized controlled trial. KSSTA 2011; 19(Suppl 1): S36-46. DOI: 10.1007/s00167-011-1458-4. PMID: 21360125
61. Strümper R. Intra-articular injections of autologous conditioned serum to treat pain from meniscal lesions. Sports Med Int Open 2017; 1(6): E200-205. DOI: 10.1055/s-0043-118625. PMID: 30539108.
62. Strümper R, et al. A combination of Tisseel fibrin glue and Orthokine ACS improves knee meniscus injury treatment and helps avoid surgery 4-year follow-up archive study. Sports Injr Med 2021; 5(1):1-8. DOI: 10.29011/2576-9596.110172
63. Gholian S, et al. Use of autologous conditioned serum dressings in hard-to-heal wounds: a randomised prospective clinical trial. J Wound Care 2022; 31(1): 68-77. DOI: 10.129 68/jowc.2022.31.1.68. PMID: 35077207.
64. Shakouri SK, et al. Intratracheal administration of autologus conditioned serum for COVID-19 associated respiratory distress syndrome. J Crit Care. 2020 Dec;60:209-211. DOI: 10.1016/j.jcrc.2 020.08.016. Epub 2020 Aug 20. PMID: 32871418
65. Godek P, et al. Biological, Mechanical or Physical? Conservative Treatment of Cervical Radiculopathy. Ortop Traumatol Rehabil. 2020;22( 6):409-419. DOI: 10.5604/01.3001.0014.6045. PMI D: 33506805
66. Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2000; 2(6): 459-465. DOI: 10.1007/s11926-000-0021-y. PMID: 11123098.
67. Pujol JP and Loyau G. Interleukin-1 and osteoarthritis. Life Sci 1987; 41(10): 1187-1198. DOI: 10.1016/0024-3205(87)90196-2.
68. Malemud CJ. Anticytokine therapy for osteoarthritis: evidence to date. Drugs Aging 2010; 27(2): 95-115. DOI: 10.2165/11319950-000000000 -00000. PMID: 20104937.
69. Chevalier X, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2009;61(3):344-352. DOI: 10.1002/art.24096. PMID: 19248129
70. Höher J, et al. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? KSSTA 1998; 6(4): 231-240. DOI: 10.1007/ s001670050105. PMID: 9826805.
71. Irie K, et al. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee 2003;10(1): 93-96. DOI: 10.101 6/s0968-0160(02)00083-2. PMID: 12649034.
72. Wilson TC, et al. Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 2004; 32(2): 543-9. DOI: 10.1177/036354650 4263151. PMID: 14977688.