THG imaging of lipid body profiles in diagnosis of biological samples
Main Article Content
Abstract
Abstract
Non linear optical imaging techniques are at the forefront of biomedical research over the last years. The ability of label free imaging, diffraction limited resolution, high penetration depth, intrinsic three dimensional (3D) sectioning and low phototoxicity make this technology a perfect diagnostic tool in many biomedical applications. This review briefly refers to the non linear microscopy modalities, depicts their advantages and focuses on recent applications of third harmonic generation microscopy in recognizing lipid body structures in biological specimens. Specifically, this study concentrates on the efficiency of THG signal quantification to be used as an innovative diagnostic tool in the follow up of mouse embryo development, in distinguishing mouse BV2 microglia cell activation and allowing classification of human breast cancer cells.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
Adur, J., Pelegati, V. B., Costa, L. F. L., Pietro, L., de Thomaz, A. A.,
Almeida, D. B., Cesar, C. L. (2011). Recognition of serous ovarian tumors in human samples by multimodal nonlinear optical microscopy. Journal of Biomedical Optics, 16(9), 096017-096017-096010. doi: 10.1117/1.3626575
Adur, J., Pelegati, V. B., de Thomaz, A. A., Baratti, M. O., Almeida, D. B., Andrade, L. A. L. A., Cesar, C. L. (2012). Optical Biomarkers of Serous and Mucinous Human Ovarian Tumor Assessed with Nonlinear Optics Microscopies. PLoS ONE, 7(10), e47007. doi: 10.1371/journal.pone.0047007
Adur, J., Pelegati, V. B., de Thomaz, A. A., D'Souza-Li, L., Assuncao Mdo, C., Bottcher-Luiz, F., Cesar, C. L. (2012). Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy. J Biomed Opt, 17(8), 081407-081401. doi: 10.1117/1.jbo.17.8.081407
Aviles-Espinosa, R., Santos, S. I. C. O., Brodschelm, A., Kaenders, W. G., Alonso-Ortega, C., Artigas, D., & Loza-Alvarez, P. (2010). Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis. Journal of Biomedical Optics, 15(4), 046020-046020-046027. doi: 10.1117/1.3477535
Bautista, G., Pfisterer, Simon G., Huttunen, Mikko J., Ranjan, S., Kanerva, K., Ikonen, E., & Kauranen, M. (2014). Polarized THG Microscopy Identifies Compositionally Different Lipid Droplets in Mammalian Cells. Biophysical Journal, 107(10), 2230-2236. doi: 10.1016/j.bpj.2014.10.009
Bélisle, J. M., Costantino, S., Leimanis, M. L., Bellemare, M.-J., Scott Bohle, D., Georges, E., & Wiseman, P. W. (2008). Sensitive Detection of Malaria Infection by Third Harmonic Generation Imaging. Biophysical Journal, 94(4), L26-L28. doi: http://dx.doi.org/10.1529/biophysj.107.125443
Boyd, R. W. (2008). Chapter 1 - The Nonlinear Optical Susceptibility Nonlinear Optics (Third Edition) (pp. 1-67). Burlington: Academic Press.
Bozza, P. T., & Viola, J. P. (2010). Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids, 82(4-6), 243-250. doi: 10.1016/j.plefa.2010.02.005
Carriles, R., Schafer, D. N., Sheetz, K. E., Field, J. J., Cisek, R., Barzda, V., Squier, J. A. (2009). Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev Sci Instrum, 80(8), 081101. doi: 10.1063/1.3184828
Chang, C. F., Chen, C. Y., Chang, F. H., Tai, S. P., Chen, C. Y., Yu, C. H., Sun, C. K. (2008). Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy. Opt Express, 16(13), 9534-9548.
Chen, C. K., & Liu, T. M. (2012). Imaging morphodynamics of human blood cells in vivo with video-rate third harmonic generation microscopy. Biomed Opt Express, 3(11), 2860-2865. doi: 10.1364/boe.3.002860
Chen, S.-Y., Hsieh, C.-S., Chu, S.-W., Lin, C.-Y., Ko, C.-Y., Chen, Y.-C., Sun, C.-K. (2006). Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. Journal of Biomedical Optics, 11(5), 054022-054022-054028. doi: 10.1117/1.2363369
Chen, S.-Y., Shee-Uan, C., Hai-Yin, W., Wen-Jeng, L., Liao, Y.-H., & Sun, C.-K. (2010). Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy. Selected Topics in Quantum Electronics, IEEE Journal of, 16(3), 478-492. doi: 10.1109/JSTQE.2009.2031987
Chen, S.-Y., Wu, H.-Y., & Sun, C.-K. (2009). In vivo harmonic generation biopsy of human skin. Journal of Biomedical Optics, 14(6), 060505-060505-060503. doi: 10.1117/1.3269676
Chiotaki, R., Polioudaki, H., & Theodoropoulos, P. A. (2014). Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability. Biochem Cell Biol, 92(4), 287-295. doi: 10.1139/bcb-2013-0120
Chu, S. W., Chen, S. Y., Tsai, T. H., Liu, T. M., Lin, C. Y., Tsai, H. J., & Sun, C. K. (2003). In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express, 11(23), 3093-3099.
Coda, S., Siersema, P. D., Stamp, G. W., & Thillainayagam, A. V. (2015). Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endosc Int Open, 3(5), E380-392. doi: 10.1055/s-0034-1392513
Daemen, S., van Zandvoort, M. A. M. J., Parekh, S. H., & Hesselink, M. K. C. (2016). Microscopy tools for the investigation of intracellular lipid storage and dynamics. Molecular Metabolism, 5(3), 153-163. doi: http://dx.doi.org/10.1016/j.molmet.2015.12.005
Débarre, D., & Beaurepaire, E. (2007). Quantitative Characterization of Biological Liquids for Third-Harmonic Generation Microscopy. Biophysical Journal, 92(2), 603-612. doi: 10.1529/biophysj.106.094946
Débarre, D., Olivier, N., Supatto, W., & Beaurepaire, E. (2014). Mitigating Phototoxicity during Multiphoton Microscopy of Live Drosophila Embryos in the 1.0–1.2 µm Wavelength Range. PLoS ONE, 9(8), e104250. doi: 10.1371/journal.pone.0104250
Debarre, D., Supatto, W., Farge, E., Moulia, B., Schanne-Klein, M. C., & Beaurepaire, E. (2004). Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos. Opt Lett, 29(24), 2881-2883.
Debarre, D., Supatto, W., Pena, A. M., Fabre, A., Tordjmann, T., Combettes, L., Beaurepaire, E. (2006). Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods, 3(1), 47-53. doi: 10.1038/nmeth813
Digel, M., Ehehalt, R., & Füllekrug, J. (2010). Lipid droplets lighting up: Insights from live microscopy. FEBS Letters, 584(11), 2168-2175. doi: http://dx.doi.org/10.1016/j.febslet.2010.03.035
Gavgiotaki, Filippidis, Kalognomou, Tsouko, Skordos, Fotakis, & Athanassakis. (2015). Third Harmonic Generation microscopy as a reliable diagnostic tool for evaluating lipid body modification during cell activation: The example of BV-2 microglia cells. Journal of Structural Biology, 189(2), 105-113. doi: http://dx.doi.org/10.1016/j.jsb.2014.11.011
Gavgiotaki, Filippidis, G., Psilodimitrakopoulos, S., Markomanolaki, H., Kalognomou, M., Agelaki, S., .Athanassakis, I. (2015). Third Harmonic Generation microscopy as a diagnostic tool for the investigation of microglia BV-2 and breast cancer cells activation. Proc. SPIE 9536, Advanced Microscopy Technique IV, and Neurophotonics II, 953614 (July 14, 2015), doi:10.1117/12.2183286; http://dx.doi.org/10.1117/12.2183286
Harpel, K., Baker, R. D., Amirsolaimani, B., Mehravar, S., Vagner, J., Matsunaga, T. O., Kieu, K. (2016). Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy. Biomedical Optics Express, 7(7), 2849-2860. doi: 10.1364/BOE.7.002849
Hsieh, C. S., Ko, C. Y., Chen, S. Y., Liu, T. M., Wu, J. S., Hu, C. H., & Sun, C. K. (2008). In vivo long-term continuous observation of gene expression in zebrafish embryo nerve systems by using harmonic generation microscopy and morphant technology. J Biomed Opt, 13(6), 064041. doi: 10.1117/1.3050423
Jesacher, A., Thayil, A., Grieve, K., Débarre, D., Watanabe, T., Wilson, T., Booth, M. (2009). Adaptive harmonic generation microscopy of mammalian embryos. Opt Lett, 34(20), 3154-3156. doi: 10.1364/OL.34.003154
Khatchadourian, A., Bourque, S. D., Richard, V. R., Titorenko, V. I., & Maysinger, D. (2012). Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta, 1821(4), 607-617. doi: 10.1016/j.bbalip.2012.01.007
Kuzmin, N. V., Wesseling, P., Hamer, P. C. d. W., Noske, D. P., Galgano, G. D., Mansvelder, H. D., Groot, M. L. (2016). Third harmonic generation imaging for fast, label-free pathology of human brain tumors. Biomedical Optics Express, 7(5), 1889-1904. doi: 10.1364/BOE.7.001889
Kyvelidou, C., Sotiriou, D., Antonopoulou, T., Tsagkaraki, M., Tserevelakis, G. J., Filippidis, G., & Athanassakis, I. (2016). L-Carnitine affects pre-implantation embryo development towards infertility in mice. Reproduction. doi: 10.1530/rep-16-0290
Kyvelidou, C., Tserevelakis, G. J., Filippidis, G., Ranella, A., Kleovoulou, A., Fotakis, C., & Athanassakis, I. (2011). Following the course of pre-implantation embryo patterning by non-linear microscopy. J Struct Biol, 176(3), 379-386. doi: 10.1016/j.jsb.2011.09.007
Lin, J., Zheng, W., Wang, Z., & Huang, Z. (2014). Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy. Applied Physics Letters, 105(10), 103705. doi: doi:http://dx.doi.org/10.1063/1.4895577
Ling, E. A., Dahlström, A., Polinsky, R. J., Nee, L. E., & McRae, A. (1992). Studies of activated microglial cells and macrophages using Alzheimer's disease cerebrospinal fluid in adult rats with experimentally induced lesions. Neuroscience, 51(4), 815-825. doi: http://dx.doi.org/10.1016/0306-4522(92)90522-4
Luengo-Oroz, M. A., Rubio-Guivernau, J. L., Faure, E., Savy, T., Duloquin, L., Olivier, N., Santos, A. (2012). Methodology for reconstructing early zebrafish development from in vivo multiphoton microscopy. IEEE Trans Image Process, 21(4), 2335-2340. doi: 10.1109/tip.2011.2177911
Mahou, P., Olivier, N., Labroille, G., Duloquin, L., Sintes, J.-M., Peyriéras, N., Beaurepaire, E. (2011). Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos. Biomedical Optics Express, 2(10), 2837-2849. doi: 10.1364/BOE.2.002837
Martin, S., & Parton, R. G. (2006). Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol, 7(5), 373-378.
Nadiarnykh, O., Thomas, G., Van Voskuilen, J., Sterenborg, H. J., & Gerritsena, H. C. (2012). Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption. J Biomed Opt, 17(11), 116024.
Rehberg, M., Krombach, F., Pohl, U., & Dietzel, S. (2011). Label-Free 3D Visualization of Cellular and Tissue Structures in Intact Muscle with Second and Third Harmonic Generation Microscopy. PLoS ONE, 6(11), e28237. doi: 10.1371/journal.pone.0028237
Sasanpour, P., Rashidian, B., Rashidian, B., & Vossoughi, M. (2010). Novel method for cancer cell apoptosis by localized UV light with gold nanostructures: A theoritical investigation Nano, 05(06), 325-332. doi: doi:10.1142/S1793292010002232
So, P. T. C., Dong, C. Y., Masters, B. R., & Berland, K. M. (2000). Two-Photon Excitation Fluorescence Microscopy. Annual Review of Biomedical Engineering, 2(1), 399-429. doi: doi:10.1146/annurev.bioeng.2.1.399
Sparrow, R. (2008). Non-linear microscopy and its applications for the study of the structure and dynamics of biological systems. Paper presented at the International Conference of the World Association of Laser Therapy, Sun City, South Africa. http://hdl.handle.net/10204/3089
Stence, N., Waite, M., & Dailey, M. E. (2001). Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices. Glia, 33(3), 256-266. doi: 10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J
Sun, C. K., Chu, S. W., Chen, S. Y., Tsai, T. H., Liu, T. M., Lin, C. Y., & Tsai, H. J. (2004). Higher harmonic generation microscopy for developmental biology. J Struct Biol, 147(1), 19-30. doi: 10.1016/j.jsb.2003.10.017
Supatto, W., Debarre, D., Moulia, B., Brouzes, E., Martin, J. L., Farge, E., & Beaurepaire, E. (2005). In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci U S A, 102(4), 1047-1052. doi: 10.1073/pnas.0405316102
Swinnen, J. V., Brusselmans, K., & Verhoeven, G. (2006). Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care, 9(4), 358-365. doi: 10.1097/01.mco.0000232894.28674.30
Tai, S.-P., Chu, S.-W., Tsai, T.-H., Chen, S.-Y., Shi, X.-Y., Chang, C.-H.,
Sun, C.-K. (2005, 2005/05/22). Molecular Imaging of Cancer Cells using Plasmon-Resonant-Enhanced Third-Harmonic-Generation Microscopy with Silver Nanoparticles. Paper presented at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Baltimore, Maryland.
Thayil, A., Watanabe, T., Jesacher, A., Wilson, T., Srinivas, S., & Booth, M. (2011). Long-term imaging of mouse embryos using adaptive harmonic generation microscopy. J Biomed Opt, 16(4), 046018. doi: 10.1117/1.3569614
Thomas, G., van Voskuilen, J., Gerritsen, H. C., & Sterenborg, H. J. C. M. (2014). Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research. Journal of Photochemistry and Photobiology B: Biology, 141, 128-138. doi: http://dx.doi.org/10.1016/j.jphotobiol.2014.08.025
Tsai, M.-R., Chen, S.-Y., Shieh, D.-B., Lou, P.-J., & Sun, C.-K. (2011). In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomedical Optics Express, 2(8), 2317-2328. doi: 10.1364/BOE.2.002317
Tserevelakis, G. J., Filippidis, G., Megalou, E. V., Fotakis, C., & Tavernarakis, N. (2011). Cell tracking in live Caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements. J Biomed Opt, 16(4), 046019. doi: 10.1117/1.3569615
Tuer, A., Tokarz, D., Prent, N., Cisek, R., Alami, J., Dumont, D. J., Barzda, V. (2010). Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections. J Biomed Opt, 15(2), 026018. doi: 10.1117/1.3382908
Walther, T. C., & Farese, R. V. (2012). Lipid Droplets And Cellular Lipid Metabolism. Annual review of biochemistry, 81, 687-714. doi: 10.1146/annurev-biochem-061009-102430
Watanabe, T., Thayil, A., Jesacher, A., Grieve, K., Debarre, D., Wilson, T., Srinivas, S. (2010). Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy. BMC Cell Biology, 11(1), 1-11. doi: 10.1186/1471-2121-11-38
Webster, M., Witkin, K. L., & Cohen-Fix, O. (2009). Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci, 122(Pt 10), 1477-1486. doi: 10.1242/jcs.037333
Weigelin, B., Bakker, G.-J., & Friedl, P. (2012). Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital, 1(1), 32-43. doi: 10.4161/intv.21223
Wolberg, W. H., Street, W. N., & Mangasarian, O. L. (1999). Importance of nuclear morphology in breast cancer prognosis. Clin Cancer Res, 5(11), 3542-3548.
Wu, P. C., Hsieh, T. Y., Tsai, Z. U., & Liu, T. M. (2015). In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep, 5, 8879. doi: 10.1038/srep08879
Xie, Z., Smith, C. J., & Van Eldik, L. J. (2004). Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia, 45(2), 170-179. doi: 10.1002/glia.10314
Zink, D., Fischer, A. H., & Nickerson, J. A. (2004). Nuclear structure in cancer cells. Nat Rev Cancer, 4(9), 677-687. doi: 10.1038/nrc1430