The Multifaceted Roles of Opsins in Sensory Reception
Main Article Content
Abstract
Opsins are known for their transmembrane signalling, through activation by light, enabling image-forming vision. However, they are represented not just in the retina but the brain and extra-cephalically throughout animal tissues, including the skin. What are they doing? Investigation of sensory modalities and genetics in the fly, Drosophila, has helped make the evolution of these proteins and their functional development clearer and shown a remarkable commonality to the role of opsins in mammalian sensory development, structure and function, helping to reveal the importance of their contribution to the evolution of mammalian anatomy and physiology.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Fredrikson, R., Laerström, M., Lundin, L., et al. The G-protein-coupled receptors in the human genome form 5 main families: phylogenetic analysis, paralogon groups and fingerprints. 2003. Mel. Pharmacol. 2003; 63(6): 1256-1272.
3. Freuda, R., Hamilton, S., McInerney, J., et al. Metazoan opsin evolution reveals a simple route to animal vision. PNAS. 2012; 109(46): 18868-18872.
4. Plachetzki, D., Degan, B., Oakley, t. The origins of novel protein interactions during animal opsin evolution. PLoS ONE. 2007; 2(10): e1054.
5. Suga, H., Schmid, V., Gehring, W. 2008. Evolution and functional diversity of jellyfish opsins. Curr. Biol. 2008;18(1): 51-55.
6. Enwin, D. Early origin of the bilaterian developmental toolkit. 2009. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1527): 2253-2261.
7. Selvini-Plawen, I., Mayr, E. On the evolution of photoreceptors and eyes. Evol Biol.1977; 10: 207-263.
8. Xiang, Y., et al. Light -avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 2010; 468: 921-926.
9. Ullrich-Lûter, E., Dupont, S., Aboleda, E., et al. Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci USA. 2011; 108(20): 8367-8372.
10. Hess, R. Untersuchunggen ûber die organe des Lichtempfundung bei niederen thieren IV: die sehorgane des Amphioxus (studies on the light sensation in lower animals IV the visual organs of amphioxus. Z Wiss Zool. 1898; 65: 456-464.
11. Gehring, W. Chance and necessity in eye evolution. Genome Biol Evol. 2011; 3: 1053-1066.
12. Shen, W., Kwon, Y., Abdemi, A., et al. Function of rhodopsin in temperature discrimination in Drosophila. Science. 2011; 331(6022): 1333-1336.
13. Kwon, Y., Shem, H., Wang, X., et al. Control of thermotactic behaviour via coupling of a TRP channel to a phospholipid C signalling cascade. Nat Neurosci 2008; 11: 871-879.
14. Pérez-Cerezales, S., Boryshpolets, S., Afanzar, O., et al. Involvement of opsins in mammalian sperm thermotaxis. Nature.2015; 5:16146/DOI:10.103.8/srep16146.
15. Senthilan, P., Piepenbrock, D., Ovezmyradov, G., et al. Drosophila auditory organ genes and genetic hearing defects. Cell. 2012; 150: 1042-1054.
16. Lu, Q., Senthilan, P., Effertz, T., et al. Using Drosophila for studying fundamental processes of hearing. Integr. Comp. Biol. 2009; 49: 674-680.
17. Göpfert, M., Robert, D., Biomechanics: Turning the key on Drosophila audition. Nature. 2001; 411: 908.
18. Kamikouchi, A., Inagaki, H., Effertz, T., et al. The neural basis of Drosophila gravity-sensing and hearing. Nature. 2009; 458: 165-171.
19. Jarman, A., Grau, Y., Jan, Y., et al. Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell. 1993; 73: 1307-1321.
20. Bermingham, N., Hassan, B., Price, S., et al. Math1: An essential gene for the generation of inner ear hair cells. Science. 1999; 284: 1837-1841.
21. Jarman, A., Grell, E., Ackerman, L., et al. Atonal is a proneural gene for Drosophila photoreceptors. Nature. 1994; 369: 398-400.
22. Jarman, A., Sim, Y., Jan, Y. Role of the proneural gene, atonal, in the formation of Drosophila chordotonal organs and photoreceptors. 1995. Development.1995; 121: 2019-2030.
23. Niwa, N., Hiromi, Y., Okabe, M. A conserved developmental program for sensory organ formation in Drosophila melanogaster. Nat. Gent. 2004; 36: 293-297.
24. Benton, R., Vannice, K., Gomez-Diaz, C., et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009; 136(1): 149-162.
25. Shen, W., Kwon, Y., Adegboda, A., et al. Function of rhodopsin in temperature discrimination in Drosophila. Science. 2011; 331: 1333-1336.
26. Kim, S., Lee, Y., Akitake, b., et al. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. USA. 2010; 107: 8440-8445.
27. Leung, N., Thakur, D., Gurav, A., et al. Functions of opsins in Drosophila taste. Curr. Biol. 2020;30: 1367-1379
28. Stryer, L. Cyclic GMP cascade in vision. Ann Rev Neurosci.1986; 9: 87-119.
29. Caldwell, J., Eberi, D. Towards a molecular understanding of Drosophila hearing. J Neurobiol. 2002; 53: 172-189.
30. Jékely, G. Origin and early evolution of neural circuits for the control of ciliary locomotion. Proc R Soc B. 2011; 278: 914-922.
31. Jékely, G., Keijzer, F., Godfrey-Smith, P. An option space for early neural development. Philos Trans R Soc London B Biol Sci. 2011; 370: 20150181.
32. Zanini, D., Gialdo, D., Warren, B., et al. Proprioceptive opsin function in Drosophila larval locomotion. Neuron. 2018; 98: 67-74.
33. Yang, J., Gao, J., Adamian, M., et al. The ciliary rootlet maintains long-term stability of sensory cilia. Mol Cell Biol. 2005; 25: 4129-4137.
34. Menon, I., Huber, T., Sanyal, S., et al. Opsin is a phospholipid flippase. Curr Biol. 2011; 21: 149-153.
35. Morra, G., Razavi, A., Pandey, K., et al. Mechanisms of lipid scrambling by the G protein coupled receptor opsin. Structure. 2018; 26(2): 356-367.
36. Khalashvili, H., Menon, a. Phospholipid scrambling by G protein-coupled receptors. Ann Rev Biophys. 2022; 51: 39-61.
37. Pomorski, T., Menon, A. Lipid flippases and their biological function. Cell Mol Life Sci. 2006; 63(24): 2908-2921.
38. Malvezzi, M., Andra, K., Pandy, K., et al. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc Natl Acad Sci USA. 2018; 114(30): E7033-E7042.