Network-Dependent Variability in Functional Connectivity after Mild Traumatic Brain Injury and Repetitive Head Impacts: A Systematic Review

Main Article Content

Owen Griffith Jon Kelly Peter Arnett Danielle Downs Frank Hillary SM Slobounov

Abstract

Mild traumatic brain injury and repetitive head impacts alter brain network functional connectivity. This review aimed to systematically analyze literature surrounding alterations in connectivity in functional networks after mild traumatic brain injury and repetitive head impacts, demonstrated with fMRI. A systematic review, adhering to PRISMA-guidelines was performed. Databases included PsycINFO, PubMed, SportDISCUS, Web of Science. 3,784 articles we returned from the databases. After inclusion screening, data were extracted from 98 articles, and analyses focused on within network connectivity. In the acute phase of injury (0-3 days), more studies presented within-network hyperconnectivity, compared to hypoconnectivity (12 hyper, 10 hypo). However, this ratio is inverted, with more studies presenting hypoconnectivity in both the subacute (14 hyper, 23 hypo) and chronic (18 hyper, 31 hypo) phases of mild traumatic brain injury. Additionally, there was hyperconnectivity observed in studies of athletes after a season of repetitive head impacts (9 hyper, 2 hypo). This finding was driven primarily by hyperconnectivity of the DMN (7 hyper, 2 hypo). Also, there was more evidence to support hyper-, in comparison to hypoconnectivity, between networks, at all phases of injury (11 hyper, 5 hypo). Finally, there were three studies that all report within-network and whole brain region hyperconnectivity in the frontal lobe simultaneous with hypoconnectivity in the parietal lobe and “posterior regions”. These findings indicate that increased or decreased connectivity in the whole brain and individual networks after mild traumatic brain injury or repetitive head impacts may provide an important biomarker for injury recovery and long-term functional deficits, thus aiding in the clinical diagnostic relevance of fMRI after mild traumatic brain injury and repetitive head impacts.

Article Details

How to Cite
GRIFFITH, Owen et al. Network-Dependent Variability in Functional Connectivity after Mild Traumatic Brain Injury and Repetitive Head Impacts: A Systematic Review. Medical Research Archives, [S.l.], v. 13, n. 1, jan. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6193>. Date accessed: 10 feb. 2025. doi: https://doi.org/10.18103/mra.v13i1.6193.
Section
Review Articles

References

1. Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20(3):353-364. doi:10.1038/nn.4502
2. Power JD, Cohen AL, Nelson SM, et al. Functional network organization of the human brain. Neuron. 2011;72(4):665-678. doi:10.1016/j.neuron.2011.09.006
3. Ji JL, Spronk M, Kulkarni K, Repovš G, Anticevic A, Cole MW. Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage. 2019;185:35-57. doi:10.1016/j.neuroimage.2018.10.006
4. Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171-178. doi:10.1038/nature18933
5. Church JA, Fair DA, Dosenbach NUF, et al. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain. 2009;132(1):225-238. doi:10.1093/brain/awn223
6. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J Neurosci. 2007;27(9):2349-2356. doi:10.1523/JNEUROSCI.5587-06.2007
7. Friston KJ. Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapp. 1994;2(1-2):56-78. doi:10.1002/hbm.460020107
8. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage. 2010;52(3):1059-1069. doi:10.1016/j.neuroimage.2009.10.003
9. Scheibel RS. Functional Magnetic Resonance Imaging of Cognitive Control following Traumatic Brain Injury. Front Neurol. 2017;8:352. doi:10.3389/fneur.2017.00352
10. Peterson DC, Reddy V, Hamel RN. Neuroanatomy, Auditory Pathway. In: StatPearls. StatPearls Publishing; 2023. Accessed September 27, 2023. http://www.ncbi.nlm.nih.gov/books/NBK532311/
11. Kuchinsky SE, Eitel MM, Lange RT, et al. Objective and Subjective Auditory Effects of Traumatic Brain Injury and Blast Exposure in Service Members and Veterans. Front Neurol. 2020;11:613. doi:10.3389/fneur.2020.00613
12. Klimova A, Breukelaar IA, Bryant RA, Korgaonkar MS. A comparison of the functional connectome in mild traumatic brain injury and post-traumatic stress disorder. Hum Brain Mapp. 2023;44(2):813-824. doi:10.1002/hbm.26101
13. Czerniak SM, Sikoglu EM, Navarro AAL, et al. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes. BRAIN IMAGING Behav. 2015;9(2):323-332. doi:10.1007/s11682-014-9312-1
14. Hou W, Sours Rhodes C, Jiang L, et al. Dynamic Functional Network Analysis in Mild Traumatic Brain Injury. Brain Connect. 2019;9(6):475-487. doi:10.1089/brain.2018.0629
15. D’Souza MM, Kumar M, Choudhary A, et al. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study. Neuroradiol J. 2020;33(2):186-197. doi:10.1177/1971400920901706
16. Mayer AR, Hanlon FM, Dodd AB, Ling JM, Klimaj SD, Meier TB. A functional magnetic resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain injury. Hum Brain Mapp. 2015;36(11):4394-4406. doi:10.1002/hbm.22930
17. Mayer AR, Yang Z, Yeo RA, et al. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):343-354. doi:10.1007/s11682-012-9178-z
18. Seeley WW. The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J Neurosci. 2019;39(50):9878-9882. doi:10.1523/JNEUROSCI.1138-17.2019
19. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A. Intrinsic Connectivity Networks, Alpha Oscillations, and Tonic Alertness: A Simultaneous Electroencephalography/Functional Magnetic Resonance Imaging Study. J Neurosci. 2010;30(30):10243-10250. doi:10.1523/JNEUROSCI.1004-10.2010
20. Gratton C, Dworetsky A, Adeyemo B, et al. The cingulo-opercular network is composed of two distinct sub-systems. Published online September 18, 2022:2022.09.16.508254. doi:10.1101/2022.09.16.508254
21. Han K, Chapman SB, Krawczyk DC. Neuroplasticity of cognitive control networks following cognitive training for chronic traumatic brain injury. NeuroImage Clin. 2018;18:262-278. doi:10.1016/j.nicl.2018.01.030
22. Buckner RL, DiNicola LM. The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci. 2019;20(10):593-608. doi:10.1038/s41583-019-0212-7
23. Andrews-Hanna JR, Saxe R, Yarkoni T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage. 2014;91:324-335. doi:10.1016/j.neuroimage.2014.01.032
24. Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci. 2021;22(3):181-192. doi:10.1038/s41583-020-00420-w
25. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676-682.
26. Han K, Chapman SB, Krawczyk DC. Disrupted Intrinsic Connectivity among Default, Dorsal Attention, and Frontoparietal Control Networks in Individuals with Chronic Traumatic Brain Injury. J Int Neuropsychol Soc. 2016;22(2):263-279. doi:10.1017/S1355617715001393
27. Amgalan A, Maher AS, Imms P, Ha MY, Fanelle TA, Irimia A. Functional Connectome Dynamics After Mild Traumatic Brain Injury According to Age and Sex. Front AGING Neurosci. 2022;14. doi:10.3389/fnagi.2022.852990
28. Palacios EM, Yuh EL, Chang YS, et al. Resting-State Functional Connectivity Alterations Associated with Six-Month Outcomes in Mild Traumatic Brain Injury. J Neurotrauma. 2017;34(8):1546-1557. doi:10.1089/neu.2016.4752
29. Marek S, Hwang K, Foran W, Hallquist MN, Luna B. The Contribution of Network Organization and Integration to the Development of Cognitive Control. PLOS Biol. 2015;13(12):e1002328. doi:10.1371/journal.pbio.1002328
30. Shah-Basak PP, Urbain C, Wong S, et al. Concussion Alters the Functional Brain Processes of Visual Attention and Working Memory. J Neurotrauma. 2018;35(2):267-277. doi:10.1089/neu.2017.5117
31. McAllister TW, Saykin AJ, Flashman LA, et al. Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurology. 1999;53(6):1300-1300. doi:10.1212/WNL.53.6.1300
32. Seidman LJ, Breiter HC, Goodman JM, et al. A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology. 1998;12(4):505-518. doi:10.1037//0894-4105.12.4.505
33. Corbetta M, Patel G, Shulman GL. The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron. 2008;58(3):306-324. doi:10.1016/j.neuron.2008.04.017
34. Friederici AD, Gierhan SME. The language network. Curr Opin Neurobiol. 2013;23(2):250-254. doi:10.1016/j.conb.2012.10.002
35. Simos NJ, Manolitsi K, Luppi AI, et al. Chronic Mild Traumatic Brain Injury: Aberrant Static and Dynamic Connectomic Features Identified Through Machine Learning Model Fusion. Neuroinformatics. 2023;21(2):427-442. doi:10.1007/s12021-022-09615-1
36. Thomas Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125-1165. doi:10.1152/jn.00338.2011
37. Beheshtian E, Jalilianhasanpour R, Modir Shanechi A, et al. Identification of the Somatomotor Network from Language Task-based fMRI Compared with Resting-State fMRI in Patients with Brain Lesions. Radiology. 2021;301(1):178-184. doi:10.1148/radiol.2021204594
38. Li F, Lu L, Chen H, et al. Disrupted brain functional hub and causal connectivity in acute mild traumatic brain injury. Aging. 2019;11(22):10684-10696. doi:10.18632/aging.102484
39. Stevens MC, Lovejoy D, Kim J, Oakes H, Kureshi I, Witt ST. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):293-318. doi:10.1007/s11682-012-9157-4
40. Vakhtin AA, Calhoun VD, Jung RE, Prestopnik JL, Taylor PA, Ford CC. Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. BRAIN Inj. 2013;27(11):1304-1310. doi:10.3109/02699052.2013.823561
41. Han K, Mac Donald CL, Johnson AM, et al. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive “mild” blast-related traumatic brain injury. NeuroImage. 2014;84:76-96. doi:10.1016/j.neuroimage.2013.08.017
42. Li F, Lu L, Li H, et al. Disrupted resting-state functional connectivity and network topology in mild traumatic brain injury: an arterial spin labelling study. Brain Commun. 2023;5(5):fcad254. doi:10.1093/braincomms/fcad254
43. Vergara VM, Mayer AR, Kiehl KA, Calhoun VD. Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning. NeuroImage Clin. 2018;19:30-37. doi:10.1016/j.nicl.2018.03.017
44. Moller MC, Nordin LE, Bartfai A, Julin P, Li TQ. Fatigue and cognitive Fatigability in Mild Traumatic Brain injury are correlated with altered neural activity during Vigilance Test Performance. Front Neurol. 2017;8. doi:10.3389/fneur.2017.00496
45. Wright T, Urban R, Durham W, et al. Growth Hormone Alters Brain Morphometry, Connectivity, and Behavior in Subjects with Fatigue after Mild Traumatic Brain Injury. J Neurotrauma. 2020;37(8):1052-1066. doi:10.1089/neu.2019.6690
46. Wang S, Hu L, Cao J, et al. Sex Differences in Abnormal Intrinsic Functional Connectivity After Acute Mild Traumatic Brain Injury. Front Neural Circuits. 2018;12:107. doi:10.3389/fncir.2018.00107
47. DeYoe EA, Raut RV. Visual Mapping Using BOLD fMRI. Neuroimaging Clin N Am. 2014;24(4):573-584. doi:10.1016/j.nic.2014.08.001
48. Huff T, Mahabadi N, Tadi P. Neuroanatomy, Visual Cortex. In: StatPearls. StatPearls Publishing; 2023. Accessed September 27, 2023. http://www.ncbi.nlm.nih.gov/books/NBK482504/
49. McAllister T, McCrea M. Long-Term Cognitive and Neuropsychiatric Consequences of Repetitive Concussion and Head-Impact Exposure. J Athl Train. 2017;52(3):309-317. doi:10.4085/1062-6050-52.1.14
50. Walter AE, Wilkes JR, Arnett PA, et al. The accumulation of subconcussive impacts on cognitive, imaging, and biomarker outcomes in child and college-aged athletes: a systematic review. Brain Imaging Behav. 2022;16(1):503-517. doi:10.1007/s11682-021-00489-6
51. Schneider DK, Galloway R, Bazarian JJ, et al. Diffusion Tensor Imaging in Athletes Sustaining Repetitive Head Impacts: A Systematic Review of Prospective Studies. J Neurotrauma. 2019;36(20):2831-2849. doi:10.1089/neu.2019.6398
52. Sun SW, Liang HF, Mei J, Xu D, Shi WX. In vivo Diffusion Tensor Imaging of Amyloid-β-Induced White Matter Damage in Mice. J Alzheimers Dis JAD. 2014;38(1):93-101. doi:10.3233/JAD-130236
53. Hillary FG, Rajtmajer SM, Roman CA, et al. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PloS One. 2014;9(8):e104021. doi:10.1371/journal.pone.0104021
54. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71
55. Wylie KP, Kronberg E, Maharajh K, Smucny J, Cornier MA, Tregellas JR. Between-network connectivity occurs in brain regions lacking layer IV input. NeuroImage. 2015;116:50-58. doi:10.1016/j.neuroimage.2015.05.010
56. McAllister TW, Arciniegas D. Evaluation and treatment of postconcussive symptoms. NeuroRehabilitation. 2002;17(4):265-283.
57. Stapert SZ. The post-concussion syndrome: understanding and treating a disease process. Tijdschr Voor Psychiatr. 2009;(/):107-116.
58. Guty E, Arnett P. Post-concussion Symptom Factors and Neuropsychological Outcomes in Collegiate Athletes. J Int Neuropsychol Soc JINS. 2018;24(7):684-692. doi:10.1017/S135561771800036X