Machine learning as a clinical decision support tool for diagnosing superficial peritoneal endometriosis in women with dysmenorrhea and acyclic pelvic pain

Main Article Content

Letícia Luiza Alves Santos, MD http://orcid.org/0000-0002-2060-5205 Mateus Carvalho de Azevedo, MD http://orcid.org/0000-0001-9962-6799 Lia Keiko Shimamura, MD http://orcid.org/0000-0002-1755-5067 Antonio Alberto Nogueira, MD, PhD http://orcid.org/0000-0003-0248-9463 Francisco José Candido-dos-Reis, MD, PhD http://orcid.org/0000-0001-5758-5917 Eduardo Schor, MD, PhD http://orcid.org/0000-0002-6141-320X Julio Cesar Rosa-e-Silva, MD, PhD http://orcid.org/0000-0001-6930-1328 Daniel Guimarães Tiezzi, MD, PhD http://orcid.org/0000-0002-2660-0093 Omero Benedicto Poli-Neto, MD, PhD http://orcid.org/0000-0002-3497-3367

Abstract

Background: Superficial peritoneal endometriosis, despite being the most common type of lesion, presents the greatest challenge for non-invasive diagnosis, resulting in the majority being recognised surgically.


Objective: To evaluate the performance of machine learning in predicting superficial peritoneal endometriosis in women with chronic dysmenorrhoea and pelvic pain without abnormal ultrasound findings.


Design: Retrospective observational study.


Subjects: 298 women with severe dysmenorrhea and persistent acyclic pelvic pain after at least 6 months of hormonal treatment who underwent laparoscopy, with imaging examinations showing no significant abnormal findings.


Exposure: Data collected included clinical history, physical examination previously to the laparoscopy.


Main Outcome Measures: Augmented backward elimination was used as a procedure to obtain a baseline interpretable binomial logistic model. The performance of various machine learning models, including Random Forest, Light Gradient Boosting Machine, Extreme Gradient Boosting, Extremely Randomised Trees, Categorical Boosting, Adaptive Boosting, Support Vector, Multilayer Perceptron, Naive Bayes, Voting, and Stacking ensemble meta-classifiers, in predicting superficial peritoneal endometriosis. Feature importance was assessed using Shapley Additive Explanations (SHAP) values. Results: The presence of irregular menstrual cycle, irritable bowel syndrome, bladder pain syndrome, abdominal trigger point, and pelvic floor tenderness were independently associated with the diagnosis of superficial peritoneal endometriosis. SHAP values indicated that a history of pelvic inflammatory disease also suggested endometriosis. The soft voting classifier, which includes Extreme Gradient Boosting and Naive Bayes algorithms, demonstrated the highest recall (79.3%), while the Support Vector classifier achieved the best specificity (74.2%).


Conclusion: Irregular menstrual cycles, irritable bowel syndrome, bladder pain syndrome, abdominal trigger points, and pelvic floor tenderness are independent factors linked with intraoperative findings of superficial peritoneal endometriosis. Additional variables, such as a history of pelvic inflammatory disease, may further enhance preoperative diagnostic accuracy. Machine learning approaches show promise in predicting the disease through pre-operative clinical data in this population. This predictive capability can support personalised patient counselling and surgical decision-making.

Keywords: Chronic pelvic pain, Dysmenorrhoea, Endometriosis, Laparoscopy, Machine learning, Prediction

Article Details

How to Cite
SANTOS, Letícia Luiza Alves et al. Machine learning as a clinical decision support tool for diagnosing superficial peritoneal endometriosis in women with dysmenorrhea and acyclic pelvic pain. Medical Research Archives, [S.l.], v. 12, n. 12, dec. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6204>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v12i12.6204.
Section
Research Articles

References

1. Kristjansdottir A, Rafnsson V, Geirsson RT. Comprehensive evaluation of the incidence and prevalence of surgically diagnosed pelvic endometriosis in a complete population. Acta Obstet Gynecol Scand. 2023;102(10):1329-1337. doi:10.1111/aogs.14556

2. Christ JP, Yu O, Schulze-Rath R, Grafton J, Hansen K, Reed SD. Incidence, prevalence, and trends in endometriosis diagnosis: a United States population-based study from 2006 to 2015. Am J Obstet Gynecol. 2021;225(5):500.e1-500.e9. doi: 10.1016/j.ajog.2021.06.067

3. Sarria-Santamera A, Orazumbekova B, Terzic M, Issanov A, Chaowen C, Asúnsolo-del-Barco A. Systematic Review and Meta-Analysis of Incidence and Prevalence of Endometriosis. Healthcare. 2020;9(1):29. doi:10.3390/healthcare9010029

4. Eisenberg V, Weil C, Chodick G, Shalev V. Epidemiology of endometriosis: a large population-based database study from a healthcare provider with 2 million members. BJOG Int J Obstet Gynaecol. 2018;125(1):55-62. doi:10. 1111/1471-0528.14711

5. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Primer. 2018;4(1):9. doi:10.1038/s41572-018-0008-5

6. Audebert A, Bäckström T, Barlow DH, et al. Endometriosis 1991: a discussion document. Hum Reprod Oxf Engl. 1992;7(3):432-435. doi:10.1093/ oxfordjournals.humrep.a137665

7. Cramer DW, Missmer SA. The Epidemiology of Endometriosis. Ann N Y Acad Sci. 2002;955(1):11-22. doi:10.1111/j.1749-6632.2002.tb02761.x

8. Della Corte L, Di Filippo C, Gabrielli O, et al. The Burden of Endometriosis on Women’s Lifespan: A Narrative Overview on Quality of Life and Psychosocial Wellbeing. Int J Environ Res Public Health. 2020;17(13):4683. doi:10.3390/ijerph17134683

9. Missmer SA, Tu FF, Agarwal SK, et al. Impact of Endometriosis on Life-Course Potential: A Narrative Review. Int J Gen Med. 2021;14:9-25. doi:10.2147/IJGM.S261139

10. Nnoaham KE, Hummelshoj L, Webster P, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366-373.e8. doi:10.1016/j.fertnstert.2011.05.090

11. Simoens S, Dunselman G, Dirksen C, et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod. 2012;27(5):1292-1299. doi:10.1093/humrep/des073

12. Soliman AM, Taylor H, Bonafede M, Nelson JK, Castelli-Haley J. Incremental direct and indirect cost burden attributed to endometriosis surgeries in the United States. Fertil Steril. 2017;107(5):1181-1190.e2. doi:10.1016/j.fertnstert.2017.03.020

13. Soliman AM, Fuldeore M, Snabes MC. Factors Associated with Time to Endometriosis Diagnosis in the United States. J Womens Health. 2017; 26(7):788-797. doi:10.1089/jwh.2016.6003

14. Agarwal SK, Chapron C, Giudice LC, et al. Clinical diagnosis of endometriosis: a call to action. Am J Obstet Gynecol. 2019;220(4):354.e1-354.e12 . doi:10.1016/j.ajog.2018.12.039

15. Sims OT, Gupta J, Missmer SA, Aninye IO. Stigma and Endometriosis: A Brief Overview and Recommendations to Improve Psychosocial Well-Being and Diagnostic Delay. Int J Environ Res Public Health. 2021;18(15):8210. doi:10.3390/ ijerph18158210

16. Chapron C, Tosti C, Marcellin L, et al. Relationship between the magnetic resonance imaging appearance of adenomyosis and endometriosis phenotypes. Hum Reprod. 2017;32 (7):1393-1401. doi:10.1093/humrep/dex088

17. Avery JC, Deslandes A, Freger SM, et al. Noninvasive diagnostic imaging for endometriosis part 1: a systematic review of recent developments in ultrasound, combination imaging, and artificial intelligence. Fertil Steril. 2024;121(2):164-188. doi:10.1016/j.fertnstert.2023.12.008

18. Kuznetsov L, Dworzynski K, Davies M, Overton C, Guideline Committee. Diagnosis and management of endometriosis: summary of NICE guidance. BMJ. 2017;358:j3935. doi:10.1136/bmj.j3935

19. Hirsch M, Begum M, Paniz É, Barker C, Davis C, Duffy J. Diagnosis and management of endometriosis: a systematic review of international and national guidelines. BJOG Int J Obstet Gynaecol. 2018;125(5):556-564. doi:10.1111/1471 -0528.14838

20. Becker CM, Bokor A, Heikinheimo O, et al. ESHRE guideline: endometriosis. Hum Reprod Open. 2022;2022(2):hoac009. doi:10.1093/hropen /hoac009

21. Goncalves MO, Siufi Neto J, Andres MP, Siufi D, de Mattos LA, Abrao MS. Systematic evaluation of endometriosis by transvaginal ultrasound can accurately replace diagnostic laparoscopy, mainly for deep and ovarian endometriosis. Hum Reprod Oxf Engl. 2021;36(6):1492-1500. doi:10.1093/ humrep/deab085

22. Leonardi M, Robledo KP, Espada M, Vanza K, Condous G. SonoPODography: A new diagnostic technique for visualizing superficial endometriosis. Eur J Obstet Gynecol Reprod Biol. 2020;254:124-131. doi:10.1016/j.ejogrb.2020.08.051

23. Pedrassani M, Guerriero S, Pascual MÁ, et al. Superficial Endometriosis at Ultrasound Examination—A Diagnostic Criteria Proposal. Diagnostics. 2023 ;13(11):1876. doi:10.3390/diagnostics13111876

24. Chen-Dixon K, Uzuner C, Mak J, Condous G. Effectiveness of ultrasound for endometriosis diagnosis. Curr Opin Obstet Gynecol. 2022;34(5) :324-331. doi:10.1097/GCO.0000000000000812

25. Horne AW, Daniels J, Hummelshoj L, Cox E, Cooper KG. Surgical removal of superficial peritoneal endometriosis for managing women with chronic pelvic pain: time for a rethink? BJOG Int J Obstet Gynaecol. 2019;126(12):1414-1416. doi:10.1111/1471-0528.15894

26. Reis FM, Santulli P, Marcellin L, Borghese B, Lafay-Pillet MC, Chapron C. Superficial Peritoneal Endometriosis: Clinical Characteristics of 203 Confirmed Cases and 1292 Endometriosis-Free Controls. Reprod Sci. 2020;27(1):309-315. doi:10. 1007/s43032-019-00028-1

27. Kalaitzopoulos DR, Samartzis N, Kolovos GN, et al. Treatment of endometriosis: a review with comparison of 8 guidelines. BMC Womens Health. 2021;21:397. doi:10.1186/s12905-021-01545-5

28. Jarrell J, Arendt-Nielsen L. Negative laparoscopy unveiled. J Endometr Pelvic Pain Disord. 2018; 10(1):18-21. doi:10.1177/2284026517749478

29. Tempest N, Efstathiou E, Petros Z, Hapangama DK. Laparoscopic Outcomes after Normal Clinical and Ultrasound Findings in Young Women with Chronic Pelvic Pain: A Cross-Sectional Study. J Clin Med. 2020;9(8). doi:10.3390/jcm 9082593

30. Steele LA, Mooney SS, Gilbee ES, Grover SR. When you see nothing at all: Outcomes following a negative laparoscopy. A systematic review. Aust N Z J Obstet Gynaecol. 2024;64(2):95-103. doi:10.1111/ajo.13749

31. Ahmad G, Gent D, Henderson D, O’Flynn H, Phillips K, Watson A. Laparoscopic entry techniques. Cochrane Database Syst Rev. 2015;8:C D006583. doi:10.1002/14651858.CD006583.pub4

32. Mackenzie SC, Stephen J, Williams L, et al. Effectiveness of laparoscopic removal of isolated superficial peritoneal endometriosis for the management of chronic pelvic pain in women (ESPriT2): protocol for a multi-centre randomised controlled trial. Trials. 2023;24(1):425. doi:10.1186 /s13063-023-07386-x

33. Mak J, Leonardi M, Condous G. ‘Seeing is believing’: arguing for diagnostic laparoscopy as a diagnostic test for endometriosis. Reprod Fertil. 2022;3(3):C23-C28. doi:10.1530/RAF-21-0117

34. Santana AN, de Santana CN, Montoya P. Chronic Pain Diagnosis Using Machine Learning, Questionnaires, and QST: A Sensitivity Experiment. Diagnostics. 2020;10(11):958. doi:10.3390/diagno stics10110958

35. Nezhat C, Armani E, Chen HCC, Najmi Z, Lindheim SR, Nezhat C. Use of the Free Endometriosis Risk Advisor App as a Non-Invasive Screening Test for Endometriosis in Patients with Chronic Pelvic Pain and/or Unexplained Infertility. J Clin Med. 2023;12(16):5234. doi:10.3390/jcm 12165234

36. Dungate B, Tucker DR, Goodwin E, Yong PJ. Assessing the Utility of artificial intelligence in endometriosis: Promises and pitfalls. Womens Health. 2024;20:17455057241248121. doi:10.117 7/17455057241248121

37. Anastasiu CV, Moga MA, Elena Neculau A, et al. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int J Mol Sci. 2020;21(5):1750. doi:10.3390/ijms21051750

38. Goldstein A, Cohen S. Self-report symptom-based endometriosis prediction using machine learning. Sci Rep. 2023;13:5499. doi:10.1038/s41 598-023-32761-8

39. Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021; 11(7):e048008. doi:10.1136/bmjopen-2020-048008

40. Kennedy S, Bergqvist A, Chapron C, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod Oxf Engl. 2005; 20(10):2698-2704. doi:10.1093/humrep/dei135

41. Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381-1395. doi:10.1249/01.MS S.0000078924.61453.FB

42. Peixoto SV, Mambrini JV de M, Firmo JOA, et al. Physical activity practice among older adults: results of the ELSI-Brazil. Rev Saúde Pública. 2018;52(Suppl 2):5s. doi:10.11606/S1518-8787.20 18052000605

43. Santos JG, Brito JO, de Andrade DC, et al. Translation to Portuguese and Validation of the Douleur Neuropathique 4 Questionnaire. J Pain. 2010;11(5):484-490. doi:10.1016/j.jpain.2009.09.014

44. Mari JJ, Williams P. A validity study of a psychiatric screening questionnaire (SRQ-20) in primary care in the city of Sao Paulo. Br J Psychiatry J Ment Sci. 1986;148:23-26.

45. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional Bowel Disorders. Gastroenterology. 2006;130(5): 1480-1491. doi:10.1053/j.gastro.2005.11.061

46. Park S, Lim J, Ko Y, et al. Diagnosis of Pelvic Congestion Syndrome Using Transabdominal and Transvaginal Sonography | AJR. Am J Roentgenol. 2004;182(3):683-688. doi:10.2214/ajr.182.3.1820683

47. Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive Statistics and Normality Tests for Statistical Data. Ann Card Anaesth. 2019;22(1):67-72. doi:10.4103/aca.ACA_157_18

48. Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not be used to guide decisions on multiple imputation. J Clin Epidemiol. 2019;110:63-73. doi:10.1016/j.jclinepi .2019.02.016

49. Buuren SV, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45(3). doi:10.18637/jss.v045.i03

50. Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol. 2019;72 (6):558-569. doi:10.4097/kja.19087

51. Baak M, Koopman R, Snoek H, Klous S. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Published online March 9, 2019. doi:10.48550/ arXiv.1811.11440

52. Heinze G, Wallisch C, Dunkler D. Variable selection - A review and recommendations for the practicing statistician. Biom J Biom Z. 2018;60 (3):431-449. doi:10.1002/bimj.201700067

53. Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit of logistic regression models in large samples: A modification of the Hosmer-Lemeshow test. Biometrics. 2020;76(2):54 9-560. doi:10.1111/biom.13249

54. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiol Camb Mass. 2010;21(1):128-138. doi: 10.1097/EDE.0b013e3181c30fb2

55. Victoria AH, Maragatham G. Automatic tuning of hyperparameters using Bayesian optimization. Evol Syst. 2021;12(1):217-223. doi:10.1007/s12530 -020-09345-2

56. Mahajan P, Uddin S, Hajati F, Moni MA. Ensemble Learning for Disease Prediction: A Review. Healthc Basel Switz. 2023;11(12):1808. doi:10.3390/healthcare11121808

57. Rodríguez-Pérez R, Bajorath J. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J Comput Aided Mol Des. 2020;34(10):1013-1026. doi:10.1007/s10822-020-00314-0

58. Bisong E. Google Colaboratory. In: Bisong E, ed. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners. Apress; 2019:59-64. doi:10.1007/978-1-4842-4470-8_7

59. Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update. 2019; 25(5):565-592. doi:10.1093/humupd/dmz018

60. Ke J, Ye J, Li M, Zhu Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules. 2021;11(11):1739. doi:10.33 90/biom11111739

61. Tang HC, Lin TC, Wu MH, Tsai SJ. Progesterone resistance in endometriosis: A pathophysiological perspective and potential treatment alternatives. Reprod Med Biol. 2024; 23(1):e12588. doi:10.1002/rmb2.12588

62. Hansen KE, Kesmodel US, Baldursson EB, Kold M, Forman A. Visceral syndrome in endometriosis patients. Eur J Obstet Gynecol Reprod Biol. 2014;179:198-203. doi:10.1016/j.ejo grb.2014.05.024

63. Nabi MY, Nauhria S, Reel M, et al. Endometriosis and irritable bowel syndrome: A systematic review and meta-analyses. Front Med. 2022;9:914356. doi:10.3389/fmed.2022.914356

64. Wu CC, Chung SD, Lin HC. Endometriosis increased the risk of bladder pain syndrome/interstitial cystitis: A population-based study. Neurourol Urodyn. 2018;37(4):1413-1418. doi:10.1002/nau.23462

65. Jarrell J. Endometriosis and abdominal myofascial pain in adults and adolescents. Curr Pain Headache Rep. 2011;15(5):368-376. doi:10. 1007/s11916-011-0218-y

66. Shafrir AL, Martel E, Missmer SA, et al. Pelvic floor, abdominal and uterine tenderness in relation to pressure pain sensitivity among women with endometriosis and chronic pelvic pain. Eur J Obstet Gynecol Reprod Biol. 2021;264:247-253. doi:10.1016/j.ejogrb.2021.07.029

67. Mayer EA, Ryu HJ, Bhatt RR. The neurobiology of irritable bowel syndrome. Mol Psychiatry. 2023;2 8(4):1451-1465. doi:10.1038/s41380-023-01972-w

68. Knox S, Offiah I, Hashim H. Evaluation of Central Sensitisation in Bladder Pain Syndrome: A Systematic Review. Int Urogynecology J. Published online May 7, 2024. doi:10.1007/s00192-024-05793-5

69. Stratton P, Khachikyan I, Sinaii N, Ortiz R, Shah J. Association of chronic pelvic pain and endometriosis with signs of sensitization and myofascial pain. Obstet Gynecol. 2015;125(3):719-728. doi:10.1097/AOG.0000000000000663

70. Coxon L, Horne AW, Vincent K. Pathophysiology of endometriosis-associated pain: a review of pelvic and central nervous system mechanisms. 2018;51:53-67. doi:10.1016/j.bpobg yn.2018.01.014

71. Morotti M, Vincent K, Becker CM. Mechanisms of pain in endometriosis. Eur J Obstet Gynecol Reprod Biol. 2017;209:8-13. doi:10.1016/j.ejogrb .2016.07.497

72. Orr NL, Huang AJ, Liu YD, et al. Association of Central Sensitization Inventory Scores With Pain Outcomes After Endometriosis Surgery. JAMA Netw Open. 2023;6(2):e230780. doi:10.1001/jama networkopen.2023.0780

73. Godin SK, Wagner J, Huang P, Bree D. The role of peripheral nerve signaling in endometriosis. FASEB BioAdvances. 2021;3(10):802-813. doi:10.1 096/fba.2021-00063

74. Tai FW, Chang C, Chiang JH, Lin WC, Wan L. Association of Pelvic Inflammatory Disease with Risk of Endometriosis: A Nationwide Cohort Study Involving 141,460 Individuals. J Clin Med. 2018;7 (11):379. doi:10.3390/jcm7110379

75. Poli-Neto OB, Carlos D, Favaretto A, Rosa-e-Silva JC, Meola J, Tiezzi D. Eutopic endometrium from women with endometriosis and chlamydial endometritis share immunological cell types and DNA repair imbalance: A transcriptome meta-analytical perspective. J Reprod Immunol. 2021; 145. doi:10.1016/j.jri.2021.103307

76. Quoc Huy NV, Phuc An LS, Phuong LS, Tam LM. Pelvic Floor and Sexual Dysfunction After Vaginal Birth With Episiotomy in Vietnamese Women. Sex Med. 2019;7(4):514-521. doi:10.1016 /j.esxm.2019.09.002

77. Gün İ, Doğan B, Özdamar Ö. Long- and short-term complications of episiotomy. Turk J Obstet Gynecol. 2016;13(3):144-148. doi:10.4274/tjod.00087

78. Shanmuga Jayanthan S, Shashikala G, Arathi N. Perineal scar endometriosis. Indian J Radiol Imaging. 2019;29(4):457-461. doi:10.4103/ijri.IJRI_366_19

79. Coxon L, Wiech K, Vincent K. Is There a Neuropathic-Like Component to Endometriosis-Associated Pain? Results From a Large Cohort Questionnaire Study. Front Pain Res Lausanne Switz. 2021;2:743812. doi:10.3389/fpain.2021.743812

80. Goncharenko V, Bubnov R, Polivka J, et al. Vaginal dryness: individualised patient profiles, risks and mitigating measures. EPMA J. 2019; 10(1):73-79. doi:10.1007/s13167-019-00164-3

81. Mark JKK, Samsudin S, Looi I, Yuen KH. Vaginal dryness: a review of current understanding and management strategies. Climacteric J Int Menopause Soc. 2024;27(3):236-244. doi:10.1080/ 13697137.2024.2306892

82. Chaichian S, Mehdizadehkashi A, Haghgoo A, et al. Sleep disorders in patients with endometriosis; a cross-sectional study. BMC Womens Health. 2024;24(1):340. doi:10.1186/s12 905-024-03185-x

83. Ding W, Yang L, Shi E, et al. The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption. Nat Commun. 2023;14(1):6696. doi:10. 1038/s41467-023-42283-6

84. Irwin MR. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol. 2019; 19(11):702-715. doi:10.1038/s41577-019-0190-z

85. Bendifallah S, Puchar A, Suisse S, et al. Machine learning algorithms as new screening approach for patients with endometriosis. Sci Rep. 2022;12(1):639. doi:10.1038/s41598-021-04637-2

86. Becker CM, Laufer MR, Stratton P, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research. Fertil Steril. 2014;102(5) :1213-1222. doi:10.1016/j.fertnstert.2014.07.709

87. Vitonis AFAF, Vincent K, Rahmioglu N, et al. World Endometriosis Research Foundation Endometriosis Phenome and biobanking harmonization project: II. Clinical and covariate phenotype data collection in endometriosis research. Fertil Steril. 2014;102(5):1223-1232. doi:10.1016/j.fertnstert.2014.07.1244

88. Khan KN, Fujishita A, Kitajima M, Hiraki K, Nakashima M, Masuzaki H. Occult microscopic endometriosis: undetectable by laparoscopy in normal peritoneum. Hum Reprod Oxf Engl. 2014;29(3):462-472. doi:10.1093/humrep/det438

89. Brown J, Kives S, Akhtar M. Progestagens and anti‐progestagens for pain associated with endometriosis. Cochrane Database Syst Rev. 2012;2012(3):CD002122.doi:10.1002/14651858.CD002122.pub2