Indirect Regulation of Na+, K+-ATPase by Endocrine Hormones: Participation of Endocrine Hormones in the Sodium Theory for Migraine
Main Article Content
Abstract
The European Migraine and Headache Alliance (https://www.emhalliance.org) estimates that migraine is one of the top ten leading causes of disability and affects 12-15% of the population. Migraine pathology is neurovascular. The neuroactivational aspect is strongly influenced by sodium ion concentration in the cerebrospinal fluid. Cerebrospinal fluid sodium levels' regulation primarily depends on the sodium pump Na+, K+-ATPase (NKA) in the choroid plexus. The sodium theory for migraine suggests that the dysregulation of NKA in migraineurs results in elevated CSF sodium, which is known to increase central sensitization, thereby predisposing these individuals to headaches.
The involvement of endocrine hormones in migraine pathology is well documented. Indirect regulation of NKA by endocrine hormones is well documented for many tissues including the brain. The focus of this review is to identify which endocrine hormones are involved in both migraine and NKA regulation in a manner consistent with the sodium theory for migraine. We believe that the identification of such endocrine hormones may lead to the development of new pharmaceuticals to address migraine.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Masuzawa T, Shinoda S, Furuse M, Nakahara N, Abe F, Sato F. Cerebral angiographic changes on serial examination of a patient with migraine. Neuroradiology. 1983;24(5):277-281. doi:10.1007/ BF00333181.
3 Brennan KC, Charles A. An update on the blood vessel in migraine. Curr Opin Neurol. 2010;23(3): 266-274. doi:10.1097/WCO.0b013e32833821c1.
4. Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573-594. doi:10.1177/0271678X17733655
5. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619-6629. doi:10.1523/JN EUROSCI.0373-15.2015.
6. Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol. 2023;270(7):3654-3666. doi:10.1007/s004 15-023-11706-1.
7. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache. 2006; 46 Suppl 4:S182-191. doi:10.1111/j.1526-4610.2006.00602.x.
8. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365-391. doi:10.1146/annurev-physiol-030212-183717.
9. Aguilar-Shea AL, Membrilla Md JA, Diaz-de-Teran J. Migraine review for general practice. Aten Primaria. 2022;54(2):102208. doi:10.1016/j.aprim. 2021.102208.
10. Loder E, Rizzoli P. Pharmacologic Prevention of Migraine: A Narrative Review of the State of the Art in 2018. Headache. 2018;58 Suppl 3:218-229. doi:10.1111/head.13375.
11. Puledda F, Tassorelli C, Diener HC.New migraine drugs. Cephalalgia. 2023;43(3):33310242 21144784. doi:10.1177/03331024221144784.
12. Hindiyeh NA, Zhang N, Farrar M, Banerjee P, Lombard L, Aurora SK. The Role of Diet and Nutrition in Migraine Triggers and Treatment: A Systematic Literature Review. Headache. 2020;60 (7):1300-1316. doi:10.1111/head.13836.
13. Martin VT, Lipton RB. Epidemiology and biology of menstrual migraine. Headache. 2008;48 Suppl 3, S124-130. doi:10.1111/j.1526-4610.2008.01310.x.
14. Friedman DI, De ver Dye T. Migraine and the environment. Headache. 2009;49, 941-952. doi: 10.1111/j.1526-4610.2009.01443.x.
15. Buse DC, Andrasik F. Behavioral medicine for migraine. Neurol Clin. 2009;27, 445-465. doi: 10.1016/j.ncl.2009.01.003.
16. Harrington MG, Chekmenev EY, Schepkin V, Fonteh AN, Arakaki X. Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine. Cephalalgia. 2011;31 (12):1254-1265. doi:10.1177/0333102411408360
17. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847-1892. doi:10. 1152/physrev.00004.2013.
18. Ghaffari, H, Grant, SC, Petzold, LR, Harrington, MG (2019) Regulation of cerebrospinal fluid and brain tissue sodium levels by choroid plexus and brain capillary endothelial cell sodium-potassium pumps during migraine. bioRxiv. 2019;572727.
19. Harrington MG, Fonteh AN, Cowan RP, Perrine K, Pogoda JM, Biringer RG, Hühmer AF. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46(7):1128-1135. doi:10.1111/j.1 526-4610.2006.00445.x.
20. Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, Hühmer AF, Biringer RG. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50(3): 459-478. doi:10.1111/j.1526-4610.2009.01551.x.
21. Pietrobon D. Familial hemiplegic migraine. Neurotherapeutics. 2007;4(2):274-284. doi:10.10 16/j.nurt.2007.01.008.
22. Matzner O, Devor M. Na+ conductance and the threshold for repetitive neuronal firing. Brain Res. 1992;597(1):92-98. doi:10.1016/0006-8993(92 )91509-d.
23. Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol. 1998;275(5):F633-650. doi: 10.1152/ajprenal.1998.275.5.F633.
24. Sandrine V. Pierre, Zijian Xie. The Na,K-ATPase receptor complex: its organization and membership. Cell Biochem Biophys. 2006;46(3):30 3-16. doi:10.1385/cbb:46:3:303.
25. Gross NB, Abad N, Lichtstein D, Taron S, Aparicio L, Fonteh AN, Arakaki X, Cowan RP, Grant SC, Harrington MG. Endogenous Na+, K+-ATPase inhibitors and CSF [Na+] contribute to migraine formation. PLoS One. 2019;14(6):e0218041. doi:10 .1371/journal.pone.0218041
26. Harik SI, Doull GH, Dick AP (1985) Specific ouabain binding to brain microvessels and choroid plexus. J Cereb Blood Flow Metab 5(1):156-160. doi:10.1038/jcbfm.1985.20
27. Teriete P, Franzin CM, Choi J, Marassi FM. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry. 2007;46(23):677 4-6783. doi:10.1021/bi700391b.
28. Teriete P, Thai K, Choi J, Marassi FM. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1. Biochim Biophys Acta. 2009;1788(11):2462-2470. doi:10.10 16/j.bbamem.2009.09.001.
29. Ewart HS, Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 1995;269(2 Pt 1):C295-311. doi:10.1152/aj pcell.1995.269.2.C295
30. McDonough AA, Farley RA. Regulation of Na,K-ATPase activity. Curr Opin Nephrol Hypertens. 1993;2(5):725-734. doi:10.1097/00041 552-199309000-00006.
31. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000; 279(3):C541-566. doi:10.1152/ajpcell.2000.279.3.C541
32. Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311(1):E1-31. doi:10.1152 /ajpendo.00539.2015
33. Obradovic M, Stanimirovic J, Panic A, Bogdanovic N, Sudar-Milovanovic E, Cenic-Milosevic D, Isenovic ER. Regulation of Na+/K+-ATPase by Estradiol and IGF-1 in Cardio-Metabolic Diseases. Curr Pharm Des. 2017;23(10):1551-1561. doi:10.2174/1381612823666170203113455.
34. Burn WK, Machin D, Waters WE. Prevalence of migraine in patients with diabetes. Br Med J (Clin Res Ed). 1984;289(6458):1579-1580. doi:10.1136/ bmj.289.6458.1579-a.
35. Antonazzo IC, Riise T, Cortese M, Berge LI, Engeland A, Bernt Fasmer O, Lund A, Joachim Ødegaard K, Poluzzi E, Bjornevik K. Diabetes is associated with decreased migraine risk: A nationwide cohort study. Cephalalgia 2018;38(11): 1759-1764. doi:10.1177/0333102417748573.
36. Berge LI, Riise T, Fasmer OB, Hundal O, Oedegaard KJ, Midthjell K, Lund A. Does diabetes have a protective effect on migraine? Epidemiology. 2013;24(1):129-134. doi:10.1097/EDE.0b013e318 27623d0
37. Hagen K, Åsvold BO, Midthjell K, Stovner LJ, Zwart JA, Linde M. Inverse relationship between type 1 diabetes mellitus and migraine. Data from the Nord-Trøndelag Health Surveys 1995-1997 and 2006-2008. Cephalalgia. 2018;38(3):417-426. doi:10.1177/0333102417690488.
38. Haghighi FS, Rahmanian M, Namiranian N, Arzaghi SM, Dehghan F, Chavoshzade F, Sepehri F. Migraine and type 2 diabetes; is there any association? J Diabetes Metab Disord. 2016;15(1): 37. doi:10.1186/s40200-016-0241-y.
39. Fagherazzi G, El Fatouhi D, Fournier A, Gusto G, Mancini FR, Balkau B, Boutron-Ruault MC, Kurth T, Bonnet F. Associations Between Migraine and Type 2 Diabetes in Women: Findings From the E3N Cohort Study. JAMA Neurol. 2019;76(3):257-263. doi:10.1001/jamaneurol.2018.3960.
40. McCarthy LC, Hosford DA, Riley JH, Bird MI, White NJ, Hewett DR, et al. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine. Genomics. 2001;78(3):135-149. doi:10.1006/geno.2001.6647.
41. Del Moro L, Rota E, Pirovano E, Rainero I. Migraine, Brain Glucose Metabolism and the "Neuroenergetic" Hypothesis: A Scoping Review. J Pain. 2022;23(8):1294-1317. doi:10.1016/j.jpain. 2022.02.006.
42. Islam MR, Nyholt DR. Glucose-Related Traits and Risk of Migraine-A Potential Mechanism and Treatment Consideration. Genes (Basel). 2022;3 (5):730. doi:10.3390/genes13050730.
43. Al-Khalili L, Kotova O, Tsuchida H, Ehrén I, Féraille E, Krook A, Chibalin AV. ERK1/2 mediates insulin stimulation of Na(+),K(+)-ATPase by phosphorylation of the alpha-subunit in human skeletal muscle cells. J Biol Chem. 2004;279 (24):25211-25218. doi:10.1074/jbc.M402152200.
44. Féraille E, Carranza ML, Gonin S, Béguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H (1999) Insulin-induced stimulation of Na+,K(+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell. 1999; 10(9):2847-2859. doi:10.1091/mbc.10.9.2847.
45. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855-872. doi.org/10.1016/s0149-7634(00)00040-3.
46. Baskin DG, Brewitt B, Davidson DA, Corp E, Paquette T, Figlewicz DP, Lewellen TK, Graham MK, Woods SG, Dorsa DM. Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes. 1986; 35(2):246-249. doi.org/10.2337/diab.35.2.246.
47. Johanson CE, Murphy VA. Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. Am J Physiol. 1990;258(6 Pt 2):F1 538-1546. doi:10.1152/ajprenal.1990.258.6.F1538.
48. Meijer RI, Gray SM, Aylor KW, Barrett EJ. Pathways for insulin access to the brain: the role of the microvascular endothelial cell. Am J Physiol Heart Circ Physiol. 2016;311(5):H1132-1138. doi: 10.1152/ajpheart.00081.2016.
49. Gray SM, Barrett EJ. Insulin transport into the brain. Am J Physiol Cell Physiol. 2018;315(2):C125-C136. doi: 10.1152/ajpcell.00240.2017.
50. Mazucanti CH, Liu QR, Lang D, Huang N, O'Connell JF, Camandola S, Egan JM. Release of insulin produced by the choroid plexis is regulated by serotonergic signaling. JCI Insight. 2019;5;4 (23):e131682. doi:10.1172/jci.insight.131682.
51. Zervas NT, Lavyne MH, Negoro M. Neurotransmitters and the normal and ischemic cerebral circulation. N Engl J Med. 1975;293(16) :812-816. doi:10.1056/NEJM197510162931607.
52. Hurley JH, Zhang S, Bye LS, Marshall MS, DePaoli-Roach AA, Guan K, Fox AP, Yu L. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase. BMC Neurosci. 2003;4:10. doi:10.1186/1471-2202-4-10.
53. Brainard JB (1981) Angiotensin and aldosterone elevation in salt-induced migraine. Headache. 1981;21(5):222-226. doi:10.1111/j.152 6-4610.1981.hed2105222.x.
54. Sassi KLM, Martins LB, de Miranda AS, Teixeira AL (2020) Renin-Angiotensin-Aldosterone System and Migraine: A Systematic Review of Human Studies. Protein Pept Lett. 2020;27(6):512-519. doi:10.2174/0929866527666200129160136
55. Wang F, Wang J, Cao Y, Xu Z (2020) Serotonin-norepinephrine reuptake inhibitors for the prevention of migraine and vestibular migraine: a systematic review and meta-analysis. Reg Anesth Pain Med. 2020;45(5):323-330. doi:10.1136/rapm-2019-101207.
56. Stanford E. Hyperaldosteronism and migraine. Lancet. 1968;1(7550):1038. doi:10.1016/s0140-67 36(68)91149-5.
57. Wernze H, Herdegen T. Long-term efficacy of spironolactone on pain, mood, and quality of life in women with fibromyalgia: An observational case series. Scand J Pain 2014;5(2):63-71. doi:10.1016/ j.sjpain.2013.12.003.
58. Yingst DR, Massey KJ, Rossi NF, Mohanty MJ, Mattingly RR. Angiotensin II directly stimulates activity and alters the phosphorylation of Na-K-ATPase in rat proximal tubule with a rapid time course. Am J Physiol Renal Physiol. 2004;287 (4):F713-721. doi:10.1152/ajprenal.00065.2004.
59. Isenovic ER, Jacobs DB, Kedees MH, Sha Q, Milivojevic N, Kawakami K, Gick G, Sowers JR. Angiotensin II regulation of the Na+ pump involves the phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways in vascular smooth muscle cells. Endocrinology. 2004;145(3):1151-1160. doi:10.1210/en.2003-0100.
60. Ikeda U, Takahashi M, Okada K, Saito T, Shimada K. Regulation of Na-K-ATPase gene expression by angiotensin II in vascular smooth muscle cells. Am J Physiol. 1994;267(4 Pt 2):H1295-H1302. doi:10.1152/ajpheart.1994.267.4.H1295
61. Tronvik E, Stovner LJ, Helde G, Sand T, Bovim G. Prophylactic treatment of migraine with an angiotensin II receptor blocker: a randomized controlled trial. JAMA. 2003;289(1):65-69. doi:10. 1001/jama.289.1.65.
62. Tronvik E, Stovner LJ, Schrader H, Bovim G. Involvement of the renin-angiotensin system in migraine. J Hypertens Suppl. 2006;24(1):S139-143. doi:10.1097/01.hjh.0000220419.86149.11
63. Nandha R, Singh H. Renin angiotensin system: A novel target for migraine prophylaxis. Indian J Pharmacol. 2012;44(2):157-160. doi:10.4103/0253 -7613.93840.
64. MacGregor DP, Murone C, Song K, Allen AM, Paxinos G, Mendelsohn FA. Angiotensin II receptor subtypes in the human central nervous system. Brain Res. 1995;675(1-2):231-240. doi:10.1016/000 6-8993(95)00076-3.
65. Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension. 2000;35(1 Pt 2):155-163. doi:10.1161/01.hyp.35.1.155.
66. Maktabi MA, Heistad DD, Faraci FM. Effects of angiotensin II on blood flow to choroid plexus. Am J Physiol. 1990;258(2 Pt 2):H414-H418. doi:10.115 2/ajpheart.1990.258.2.H414.
67. Dorosch T, Ganzer CA, Lin M, Seifan A (2019) Efficacy of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in the Preventative Treatment of Episodic Migraine in Adults. Curr Pain Headache Rep. 2019;23(11):85. doi:10.1007/s11916-019-0823-8.
68. Freel EM, Connell JM. Mechanisms of hypertension: the expanding role of aldosterone. J Am Soc Nephrol. 2004;15(8):1993-2001. doi:10.10 97/01.ASN.0000132473.50966.14
69. Shahedi M, Laborde K, Bussières L, Sachs C. Acute and early effects of aldosterone on Na-K-ATPase activity in Madin-Darby canine kidney epithelial cells. Am J Physiol. 1993;264(6 Pt 2):F10 21-1026. doi:10.1152/ajprenal.1993.264.6.F1021
70. Féraille E, Mordasini D, Gonin S, Deschênes G, Vinciguerra M, Doucet A, Vandewalle A, Summa V, Verrey F, Martin PY. Mechanism of control of Na,K-ATPase in principal cells of the mammalian collecting duct. Ann N Y Acad Sci. 2003;986:570-578. doi:10.1111/j.1749-6632.2003.tb07255.x.
71. Verrey F, Summa V, Heitzmann D, Mordasini D, Vandewalle A, Féraille E, Zecevic M. Short-term aldosterone action on Na,K-ATPase surface expression: role of aldosterone-induced SGK1? Ann N Y Acad Sci. 2003;986:554-561. doi:10.111 1/j.1749-6632.2003.tb07253.x.
72. Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension. 1992;19(3):221-227. doi:10.1161/01.hyp.19.3.221.
73. Summa V, Mordasini D, Roger F, Bens M, Martin PY, Vandewalle A, Verrey F, Féraille E. Short term effect of aldosterone on Na,K-ATPase cell surface expression in kidney collecting duct cells. J Biol Chem. 2001;276(50):47087-47093. doi:10.107 4/jbc.M107165200.
74. Geerling JC, Loewy AD. Aldosterone in the brain. Am J Physiol Renal Physiol. 2009;297(3): F559-576. doi:10.1152/ajprenal.90399.2008.
75. Verrey F, Summa V, Heitzmann D, Mordasini D, Vandewalle A, Féraille E, Zecevic M. Short-term aldosterone action on Na,K-ATPase surface expression: role of aldosterone-induced SGK1? Ann N Y Acad Sci 2003;986:554-561. doi:10.111 1/j.1749-6632.2003.tb07253.x
76. Sheldon CA, Kwon YJ, Liu GT, McCormack SE. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics. Pediatr Res. 2015;77 (2):282-289. doi:10.1038/pr.2014.188.
77. Leenen FH. The central role of the brain aldosterone-"ouabain" pathway in salt-sensitive hypertension. Biochim Biophys Acta. 2010;1802( 12):1132-1139. doi:10.1016/j.bbadis.2010.03.004.
78. Krause DN, Warfvinge K, Haanes KA, Edvinsson L.Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol. 2021;17(10):621-633. doi:10.1038/s4 1582-021-00544-2.
79. MacGregor EA, Frith A, Ellis J, Aspinall L, Hackshaw A. Incidence of migraine relative to menstrual cycle phases of rising and falling estrogen. Neurology. 2006;67(12):2154-2158. doi: 10.1212/01.wnl.0000233888.18228.19.
80. Somerville BW. The role of estradiol withdrawal in the etiology of menstrual migraine. Neurology. 1972a;22(4):355-365. doi:10.1212/wnl. 22.4.355.
81. Brandes JL. The influence of estrogen on migraine: a systematic review. JAMA. 2006;295 (15):1824-1830. doi:10.1001/jama.295.15.1824.
82. Somerville BW. The influence of progesterone and estradiol upon migraine. Headache. 1972b;12 (3):93-102. doi:10.1111/j.1526-4610.1972.hed1203093.x.
83. Obradovic M, Stewart AJ, Pitt SJ, Labudovic-Borovic M, Sudar E, Petrovic V, Zafirovic S, Maravic-Stojkovic V, Vasic V, Isenovic ER. In vivo effects of 17β-estradiol on cardiac Na(+)/K(+)-ATPase expression and activity in rat heart. Mol Cell Endocrinol. 2014;388(1-2):58-68. doi:10.1016/j. mce.2014.03.005.
84. Liu CG, Xu KQ, Xu X, Huang JJ, Xiao JC, Zhang JP, Song HP. 17Beta-oestradiol regulates the expression of Na+/K+-ATPase beta1-subunit, sarcoplasmic reticulum Ca2+-ATPase and carbonic anhydrase iv in H9C2 cells. Clin Exp Pharmacol Physiol. 2007;34(10):998-1004. doi:10.1111/j.1440 -1681.2007.04675.x.
85. Li Y, Yang J, Li S, Zhang J, Zheng J, Hou W, Zhao H, Guo Y, Liu X, Dou K, Situ Z, Yao L. N-myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J Biol Chem. 2011 Sep 16;286 (37):32289-32299. doi:10.1074/jbc.M111.247825.
86. Deng WB, Tian Z, Liang XH, Wang BC, Yang F, Yang ZM. Progesterone regulation of Na/K-ATPase β1 subunit expression in the mouse uterus during the peri-implantation period. Theriogenology. 2013;79(8):1196-1203. doi:10.1016/j.theriogenolo gy.2013.02.018.
87. Hong-Goka BC, Chang FL. Estrogen receptors alpha and beta in choroid plexus epithelial cells in Alzheimer's disease. Neurosci Lett. 2004;360(3): 113-116. doi:10.1016/j.neulet.2004.01.075.
88. Quintela T, Gonçalves I, Baltazar G, Alves CH, Saraiva MJ, Santos CR. 17beta-estradiol induces transthyretin expression in murine choroid plexus via an estrogen receptor-dependent pathway. Cell Mol Neurobiol. 2009;29(4):475-483. doi:10.1007/ s10571-008-9339-1.
89. Nagata Y, Kusuhara H, Endou H, Sugiyama Y. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol Pharmacol. 2002;61(5):982-988. doi:10 .1124/mol.61.5.982.
90. König J, Seithel A, Gradhand U, Fromm MF. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch Pharmacol. 2006;372 (6):432-443. doi:10.1007/s00210-006-0040-y.
91. Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics. 20019;12(1):20. doi:10.3390/pharmaceutics12010020.
92. Tasnim S, Nyholt DR. Migraine and thyroid dysfunction: Co-occurrence, shared genes and biological mechanisms. Eur J Neurol. 2023;30 (6):1815-1827. doi:10.1016/10.1111/ene.15753
93. Bhattacharjee M, Karim MR, Rahman MA, Mondol G, Khan MK, Biswas R, Sarker UK. Association of Low Thyroid Hormone with Migraine Headache. Mymensingh Med J. 2021;30(1):43-47.
94. Emad EM, Mousa MM, Shehta N. Migraine and Subclinical Hypothyroidism: A Possible Co-morbidity. Zagazig University Medical Journal. 2022;28.2:379-388. doi:10.21608/zumj.2021.108874.2422.
95. Moreau T, Manceau E, Giroud-Baleydier F, Dumas R, Giroud M. Headache in hypothyroidism. Prevalence and outcome under thyroid hormone therapy. Cephalalgia. 1998;18(10):687-689. doi:10. 1046/j.1468-2982.1998.1810687.x.
96. Le H, Tfelt-Hansen P, Russell MB, Skytthe A, Kyvik KO, Olesen J. Co-morbidity of migraine with somatic disease in a large population-based study. Cephalalgia. 2011;31(1):43-64. doi:10.1016/10.11 77/0333102410373159.
97. Borkum JM. Migraine Triggers, Oxidative Stress, and the Thyroid. Headache. 2016;56(4):784 -785. doi:10.1111/head.12808.
98. Maggioni F, Maggioni G, Mainardi F. Migraine, Triggers, and Oxidative Stress: Be Careful of the Pharmacological Anamnesis! Headache. 2016;56 (4):782-783. doi:10.1111/head.12809.
99. Thomas DJ, Robinson S, Robinson A, Johnston DG. Migraine threshold is altered in hyperthyroidism. J Neurol Neurosurg Psychiatry. 1996;61, 222.
100. Stone J, Foulkes A, Adamson K, Stevenson L, Al-Shahi Salman R. Thyrotoxicosis presenting with headache. Cephalalgia. 2007;27(6):561-562. doi: 10.1111/j.1468-2982.2007.01309.x.
101. Lei J, Mariash CN, Bhargava M, Wattenberg EV, Ingbar DH. T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L749-754. doi:10.11 52/ajplung.00335.2007.
102. Bajpai M, Chaudhury S. Transcriptional and post-transcriptional regulation of Na+,K(+)-ATPase alpha isoforms by thyroid hormone in the developing rat brain. Neuroreport. 1999;10(11):23 25-2328. doi:10.1097/00001756-199908020-00019.
103. Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol. 2005;3:66. doi:10.3389/fcell.2015.00066.
104. Kamitani T, Ikeda U, Muto S, Kawakami K, Nagano K, Tsuruya Y, Oguchi A, Yamamoto K, Hara Y, Kojima T. Regulation of Na,K-ATPase gene expression by thyroid hormone in rat cardiocytes. Circ Res. 1992;71(6):1457-1464. doi:10.1161/01. res.71.6.1457.
105. Richardson SJ, Wijayagunaratne RC, D'Souza DG, Darras VM, Van Herck SL. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Front Neurosci. 2015;9:66. doi:10.3389/fnins.2015.00066.
106. Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol. 2018;237(1):R19-34. doi:10. 1530/JOE-17-0708.
107. Dratman MB, Crutchfield FL, Schoenhoff MB. Transport of iodothyronines from bloodstream to brain: contributions by blood:brain and choroid plexus:cerebrospinal fluid barriers. Brain Res. 1991;554(1-2):229-236. doi:10.1016/0006-8993(91 )90194-z.
108. Schroeder AC, Privalsky ML. Thyroid hormones, t3 and t4, in the brain. Front Endocrinol (Lausanne). 2014;5:40. doi:10.3389/fendo.2014.00040
109. Schreiber G, Aldred AR, Jaworowski A, Nilsson C, Achen MG, Segal MB. Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol. 1990;258(2 Pt 2):R338-345. doi:10.1152/ajpregu.1990.258.2.R338.
110. Richardson SJ, Van Herck S, Delbaere J, McAllan BM, Darras VM. The affinity of transthyretin for T3 or T4 does not determine which form of the hormone accumulates in the choroid plexus. Gen Comp Endocrinol. 2018;264:131-137. doi:10.1016/j.ygcen.2017.09.012.
111. Santini F, Pinchera A, Ceccarini G, Castagna M, Rosellini V, Mammoli C, Montanelli L, Zucchi V, Chopra IJ, Chiovato L. Evidence for a role of the type III-iodothyronine deiodinase in the regulation of 3,5,3'-triiodothyronine content in the human central nervous system. Eur J Endocrinol. 2001; 144(6):577-583. doi:10.1530/eje.0.1440577.
112. Dratman MB, Crutchfield FL. Synaptosomal [125I]triiodothyronine after intravenous [125I]thyroxine. Am J Physiol. 1978;235(6):E638-647. doi:10.1152/ ajpendo.1978.235.6.E638.
113. Puymirat J, Miehe M, Marchand R, Sarlieve L, Dussault JH. Immunocytochemical localization of thyroid hormone receptors in the adult rat brain. Thyroid. 1991;1(2):173-184. https://doi.org/10.1089/thy.1991.1.173533. doi:10.1016/0006-2952(82)90377-x