Bridging Models: Preeclampsia Biomarkers in Salt-Loaded Rats and Human Patients

Main Article Content

Deliana Rojasa Cilia Abad Sandy Piñero Margrego Piña Fulgencio Proverbio Reinaldo Marín

Abstract

Preeclampsia, a pregnancy-specific syndrome with multisystem involvement, significantly contributes to maternal and fetal morbidity and mortality. This study compared physiological, fetal, and placental parameters between preeclamptic women and salt-loaded pregnant rats, an established animal model for preeclampsia. We evaluated lipid peroxidation levels in both placental homogenates and red blood cell ghosts, and Ca-ATPase activity in placental homogenates. Additionally, we assessed the effects of magnesium sulfate (MgSO4) treatment on these parameters.


Salt-loaded pregnant rats received 1.8% NaCl solution ad libitum for seven days starting from the 15th day of pregnancy. For analysis, blood and placental samples were obtained from preeclamptic women and the rat model.


Results showed that salt-loaded pregnant rats exhibited similar characteristics to preeclamptic women, including increased lipid peroxidation, and lowered Ca-ATPase activity in placental and red blood cell ghosts. MgSO4 treatment in preeclamptic women and salt-loaded rats modified Ca-ATPase activity and lipid peroxidation levels in red blood cell membranes and placental membranes, bringing values closer to normal values. The reduction in lipid peroxidation by MgSO4 may account for increased Ca-ATPase activity.


This study validates the salt-loaded pregnant rat model as a valuable tool for investigating preeclampsia, offering insights into the condition's pathophysiology and potential therapeutic interventions.

Keywords: Preeclampsia, Lipid peroxidation, Ca-ATPase, Animal Model, Magnesium Sulfate

Article Details

How to Cite
ROJASA, Deliana et al. Bridging Models: Preeclampsia Biomarkers in Salt-Loaded Rats and Human Patients. Medical Research Archives, [S.l.], v. 13, n. 1, jan. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6233>. Date accessed: 10 feb. 2025. doi: https://doi.org/10.18103/mra.v13i1.6233.
Section
Research Articles

References

1. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785-799.
2. ACOG. Gestational hypertension and preeclampsia: ACOG practice bulletin summary, number 222. Obstet Gynecol. 2020;135(6):1492-1495.
3. Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet. 2021;398(10297):341-354.
4. Arany Z, Hilfiker-Kleiner D, Karumanchi SA. Animal Models of Cardiovascular Complications of Pregnancy. Circ Res. 2022;130(12):1763-1779.
5. Bakrania BA, George EM, Granger JP. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol. 2020.
6. Beauséjour A, Auger K, St-Louis J, Brochu M. High-sodium intake prevents pregnancy-induced decrease of blood pressure in the rat. Am J Physiol Heart Circ Physiol. 2003;285(1):H375-383.
7. Beauséjour A, Bibeau K, Lavoie JC, St-Louis J, Brochu M. Placental oxidative stress in a rat model of preeclampsia. Placenta. 2007;28(1):52-58.
8. Beauséjour A, Houde V, Bibeau K, Gaudet R, St-Louis J, Brochu M. Renal and cardiac oxidative/nitrosative stress in salt-loaded pregnant rat. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1657-1665.
9. Sakowicz A, Bralewska M, Kamola P, Pietrucha T. Reliability of Rodent and Rabbit Models in Preeclampsia Research. Int J Mol Sci. 2022;23(22).
10. Rojas D, Rodríguez F, Barraez J, et al. Osmotic fragility of red blood cells, lipid peroxidation and Ca2+-ATPase activity of placental homogenates and red blood cell ghosts in salt-loaded pregnant rats. J Matern Fetal Neonatal Med. 2016;29(2):229-233.
11. Abad C, Proverbio T, Piñero S, et al. Preeclampsia, Placenta, Oxidative Stress, and PMCA. Hypertension Preg. 2012;31(4):427-441.
12. Abad C, Teppa-Garrán A, Proverbio T, Piñero S, Proverbio F, Marín R. Effect of magnesium sulfate on the calcium-stimulated adenosine triphosphatase activity and lipid peroxidation of red blood cell membranes from preeclamptic women. Biochem Pharmacol. 2005;70(11):1634-1641.
13. Abad C, Vargas FR, Zoltan T, et al. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia. Placenta. 2015;36(2):179-185.
14. Chiarello DI, Marín R, Proverbio F, et al. Mechanisms of the effect of magnesium salts in preeclampsia. Placenta. 2018;69:134-139.
15. Marín R, Abad C, Rojas D, et al. Magnesium salts in pregnancy. JTEMIN. 2023;4:100071.
16. Abad C, Chiarello DI, Rojas D, Beretta V, Perrone S, Marín R. Oxidative Stress in Preeclampsia and Preterm Newborn. In: Andreescu S, Henkel R, Khelfi A, eds. Biomarkers of Oxidative Stress: Clinical Aspects of Oxidative Stress. Cham: Springer Nature Switzerland; 2024:197-220.
17. Fernández M, Marín R, Proverbio F, Chiarello DI, Ruette F. Magnesium sulfate against oxidative damage of membrane lipids: A theoretical model. Int J Quantum Chem, e25423. 2017(e25423).
18. Fernández M, Marín R, Proverbio F, Ruette F. Effect of magnesium sulfate in oxidized lipid bilayers properties by using molecular dynamics. Biochem Biophys Rep. 2021;26:100998.
19. Fernández M, Marín R, Ruette F. Antioxidant Activity of MgSO4 Ion Pairs by Spin-Electron Stabilization of Hydroxyl Radicals through DFT Calculations: Biological Relevance. ACS Omega. 2024;9(34):36640-36647.
20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem. 1976;72:248-254.
21. Heinz E, Hoffman JF. Phosphate incorporation of Na+,K+ ATPase activity in human red blood cell ghost. J Cell Comp Physiol. 1965;54:31-44.
22. Marín R, Proverbio T, Proverbio F. Inside-out basolateral plasma membrane vesicles from rat kidney proximal tubular cells. Biochim Biophys Acta. 1986;858(1):195-201.
23. Proverbio F, Proverbio T, Marin R. Na+-ATPase is a different entity from the (Na++K+)-ATPase in rat kidney basolateral plasma membranes. Biochim Biophys Acta. 1986;858(1):202-205.
24. Nardulli G, Proverbio F, Limongi FG, Marín R, Proverbio T. Preeclampsia and calcium adenosine triphosphatase activity of red blood cell ghosts. Am J Obstet Gynecol. 1994;171:1361-1365.
25. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375-400.
26. Feix JB, Bachowski GJ, Girotti AW. Photodynamic action of merocyanine 540 on erythrocyte membranes: structural perturbation of lipid and protein constituents. Biochim Biophys Acta. 1991;1075(1):28-35.
27. Abad C, Carrasco M, Piñero S, et al. Effect of magnesium sulfate on the osmotic fragility and lipid peroxidation of intact red blood cells from pregnant women with severe preeclampsia. Hypertension Preg. 2010;29(1):38-53.
28. Marín R, Abad C, Rojas D, Chiarello DI, Teppa-Garrán A. Biomarkers of oxidative stress and reproductive complications. Adv Clin Chem. 2023;113:157-233.