Predictors of Mortality Among Stable COPD Patients: Results from A Longitudinal Study in India
Main Article Content
Abstract
Aims: Studies regarding predictors of mortality among stable chronic obstructive pulmonary disease (COPD)patients are limited, with existing data suffering from heterogeneity in terms of the study population, parameters analysed and results, necessitating generalisation from data of high-income countries. This longitudinal observational study aims to analyse factors responsible for 5-year all-cause mortality among stable COPD patients from a single tertiary care centre in India.
Methods: Spirometry diagnosed stable COPD patients were contacted telephonically at the end of 5 years, and the outcome was recorded as alive or dead based on telephonic response. Demographic details including age, sex, residence, smoking status, body mass index (BMI), spirometric indices, six-minute walk distance, combined assessment, modified Medical Research Council dyspnea scores, presence or absence of anxiety/depression, history of previous hospitalisation was available at baseline.
Results: Out of 130 participants at baseline, 75 responded telephonically, with a mortality rate of 26.6% among the 75 subjects. BMI and combined assessment demonstrate a significant association with mortality and fare better than the demographic variables, multivariate indices and spirometric severity on univariate and multivariate analysis.
Conclusion: BMI is a better predictor of mortality among COPD patients than other demographic characteristics. Combined assessment is not only a tool for initial stratification and treatment initiation but also has prognostic utility in stable COPD patients and fares better than other clinical characteristics.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007;370(9589):741-750. doi:10.1016/S0140-6736(07)61377-4
3. Daniel RA, Aggarwal P, Kalaivani M, Gupta SK. Prevalence of chronic obstructive pulmonary disease in India: A systematic review and meta-analysis. Lung India. 2021;38(6):506-513. doi:10.4103/lungindia.lungindia_159_21
4. Lindberg A, Lindberg L, Sawalha S, et al. Large underreporting of COPD as cause of death-results from a population-based cohort study. Respir Med. 2021;186:106518. doi:10.1016/j.rmed.2021.106518
5. India State-Level Disease Burden Initiative Collaborators. Nations within a nation: variations in epidemiological transition across the states of India, 1990-2016 in the Global Burden of Disease Study. Lancet. 2017;390(10111):2437-2460. doi:10.1016/S0140-6736(17)32804-0
6. Whittaker H, Rubino A, Müllerová H, et al. Frequency and Severity of Exacerbations of COPD Associated with Future Risk of Exacerbations and Mortality: A UK Routine Health Care Data Study. Int J Chron Obstruct Pulmon Dis. 2022;17:427-437. doi:10.2147/COPD.S346591
7. Cadham CJ, Oh H, Han MK, et al. The prevalence and mortality risks of PRISm and COPD in the United States from NHANES 2007-2012. Respir Res. 2024;25(1):208. doi:10.1186/s12931-024-02841-y
8. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361-370. doi:10.1111/j.1600-0447.1983.tb09716.x
9. Levis B, Benedetti A, Thombs BD, DEPRESsion Screening Data (DEPRESSD) Collaboration. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis. BMJ. 2019;365:l1476. doi:10.1136/bmj.l1476
10. Muñoz-Navarro R, Cano-Vindel A, Moriana JA, et al. Screening for generalized anxiety disorder in Spanish primary care centers with the GAD-7. Psychiatry Res. 2017;256:312-317. doi:10.1016/j.psychres.2017.06.023
11. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-117. doi:10.1164/ajrccm.166.1.at1102
12. Song Q, Lin L, Cheng W, et al. Clinical-functional characteristics and risk of exacerbation and mortality among more symptomatic patients with chronic obstructive pulmonary disease: a retrospective cohort study. BMJ Open. 2023;13(3):e065625. doi:10.1136/bmjopen-2022-065625
13. Hwang HJ, Lee SM, Seo JB, et al. Quantitative Vertebral Bone Density Seen on Chest CT in Chronic Obstructive Pulmonary Disease Patients: Association with Mortality in the Korean Obstructive Lung Disease Cohort. Korean J Radiol. 2020;21(7):880-890. doi:10.3348/kjr.2019.0551
14. Loh LC, Ong CK, Koo HJ, et al. A novel CT-emphysema index/FEV1 approach of phenotyping COPD to predict mortality. Int J Chron Obstruct Pulmon Dis. 2018;13:2543-2550. doi:10.2147/COPD.S165898
15. Bellou V, Belbasis L, Konstantinidis AK, Tzoulaki I, Evangelou E. Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal. BMJ. 2019;367:l5358. doi:10.1136/bmj.l5358
16. Wu Z, Yang D, Ge Z, Yan M, Wu N, Liu Y. Body mass index of patients with chronic obstructive pulmonary disease is associated with pulmonary function and exacerbations: a retrospective real-world research. J Thorac Dis. 2018;10(8):5086-5099. doi:10.21037/jtd.2018.08.67
17. Guo Y, Zhang T, Wang Z, et al. Body mass index and mortality in chronic obstructive pulmonary disease: A dose-response meta-analysis. Medicine (Baltimore). 2016;95(28):e4225. doi:10.1097/MD.0000000000004225
18. Tenda ED, Henrina J, Setiadharma A, et al. The impact of body mass index on mortality in COPD: an updated dose-response meta-analysis. Eur Respir Rev. 2024;33(174):230261. doi:10.1183/16000617.0261-2023
19. Song Q, Zhou A, Lin L, et al. The clinical characteristics and treatment response of patients with chronic obstructive pulmonary disease with low body mass index. Front Pharmacol. 2023;14:1131614. doi:10.3389/fphar.2023.1131614
20. Dua R, Kumari R, Yadav V, et al. New combined assessment of chronic obstructive pulmonary disease: Utilization, pitfalls, and association with spirometry. Lung India. 2019;36(3):183-187. doi:10.4103/lungindia.lungindia_163_18
21. Leuzzi G, Galeone C, Taverna F, Suatoni P, Morelli D, Pastorino U. C-reactive protein level predicts mortality in COPD: a systematic review and meta-analysis. Eur Respir Rev. 2017;26(143):160070. doi:10.1183/16000617.0070-2016
22. Waschki B, Alter P, Zeller T, et al. High-sensitivity troponin I and all-cause mortality in patients with stable COPD: an analysis of the COSYCONET study. Eur Respir J. 2020;55(2):1901314. doi:10.1183/13993003.01314-2019
23. Zuur-Telgen MC, Brusse-Keizer MGJ, VanderValk PDLPM, van der Palen J, Kerstjens HAM, Hendrix MGR. Stable-State Midrange-Proadrenomedullin Level Is a Strong Predictor of Mortality in Patients With COPD. Chest. 2014;145(3):534-541. doi:10.1378/chest.13-1063
24. Yun J, Cho YH, Lee SM, et al. Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease. Sci Rep. 2021;11(1):15144. doi:10.1038/s41598-021-94535-4