Adult Malaria and Co-Infections: Clinical Presentation, Diagnosis and Outcome in Central India
Main Article Content
Abstract
Background: India has the highest malaria incidence in Asia and ranks second globally. Concurrent infections, particularly with dengue and chikungunya are common during monsoon and post monsoon seasons. These co-infections complicate diagnosis and management, especially in resource-limited settings. This study is aimed to investigate the profile, clinical features, and outcomes of co-infections in malaria patients.
Methods: A cross-sectional observational study was conducted in Central India, from June 2023 to October 2024. Patients presenting with acute febrile illness were tested by multiplex polymerase chain reaction for common causes of tropical fever. Clinical and demographic data were collected, and malaria cases with or without co-infections were included. Statistical analysis was performed with significance set at p < 0.05.
Results: Of 587 acute febrile illness patients tested via multiplex PCR, 214 diagnosed malaria cases included. Mono-infections accounted for 63.55%, while 34.45% had concurrent infections (51.28% males, 48.72% females). Co-infections were common with chikungunya (26.92%), dengue (24.36%), rickettsia (14.10%), and scrub typhus (11.54%). Fever lasted <7 days in 92.31% (p < 0.001) cases. Co-infected patients exhibited higher rates of symptoms like maculopapular rash, retro-orbital pain, and bleeding manifestations compared to mono-infected malaria cases. Co-infections showed severe thrombocytopenia, elevated liver markers, and complications like jaundice and abnormal bleeding. Mortality was observed in 07 (03.27%) cases.
Conclusion: This study provides valuable insights into the patterns, prevalence, and clinical implications of malaria co-infections in central India, emphasizing the critical role of advanced diagnostic techniques like multiplex PCR in improving early and accurate diagnosis. The findings underscore the complexity of febrile illnesses in high-burden regions and the necessity for tailored diagnostic and management strategies, particularly during monsoon and post-monsoon seasons. Future research with larger, multicentre studies and long-term follow-up is needed to validate these findings and address existing gaps in knowledge.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. van Eijk AM, Mannan AS, Sullivan SA, Carlton JM. Defining symptoms of malaria in India in an era of asymptomatic infections. Malar J. 2020 ;19(1):237. doi: 10.1186/s12936-020-03310-9.
3. Pandey S, Rai P, Guha SK, et al. Outcome of adult malarial co-infections in Eastern India. J Glob Infect Dis. 2022 Jun 29;14(2):57-63. doi: 10.4103/jgid.jgid_279_21.
4. Scorza T, Magez S, Brys L, De Baetselier P. Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunol. 1999;21(11):545-54. doi: 10.1046/j.1365-3024.1999.00254.x.
5. Bhattacharya SK, Sur D, Dutta S, et al. Vivax malaria and bacteraemia: a prospective study in Kolkata, India. Malar J. 2013 May 31;12:176. doi: 10.1186/1475-2875-12-176.
6. Kamath V, Ganguly S, Avinash BL. A comparative study of concurrent infections of rickettsial infection, malaria, typhoid, and chikungunya with dengue. APIK J Int Med.. 2019; 7(4):120-6. doi: 10.4103/AJIM.AJIM_3_19.
7. Agrawal V, Rai P, Rai P, Narula H, Pandey S. There is a lack of quality clinical and laboratory data on co-infections among malaria patients despite several published systematic reviews of the literature. Trop Doct. 2023;53(1):5-6. doi: 10.1177/00494755221136178.
8. Salam N, Mustafa S, Hafiz A, Chaudhary A, Deeba F, Parveen S. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: A systematic review. BMC Public Health. 2018;18:1–20. doi: 10.1186/s12889-018-5626-z.
9. Mala W, Wilairatana P, Kotepui KU, Kotepui M. Prevalence of malaria and chikungunya co-infection in febrile patients: A systematic review and meta-analysis. Trop Med Infect Dis. 2021;6(3):119. doi: 10.3390/tropicalmed6030119.
10. Mørch K, Manoharan A, Chandy S, et al. Acute undifferentiated fever in India: a multicentre study of aetiology and diagnostic accuracy. BMC Infect Dis. 2017 Oct 4;17(1):665.doi: 10.1186/s12879-017-2764-3.
11. Selvaretnam A, Sahu P, Sahu M, Ambu S. A review of concurrent infections of malaria and dengue in Asia. Asian Pac J Trop Biomed. 2016;6:633‑8. https://doi.org/10.1016/j.apjtb.2016.05.008.
12. Gómez-Pérez GP, van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J. 2014;13:335. doi: 10.1186/1475-2875-13-335.
13. Wiwanitkit V. Concurrent malaria and dengue infection: a brief summary and comment. Asian Pac J Trop Biomed. 2011;1(4):326-7. doi: 10.1016/S2221-1691(11)60053-1.
14. Tazeen A, Abdullah M, Hisamuddin M, et al. Concurrent Infection with Plasmodium vivax and the dengue and chikungunya viruses in a paediatric patient from New Delhi, India in 2016. Intervirology. 2017;60(1-2):48-52. doi: 10.1159/000479430.
15. Gupta N, Gupta C, Gomber A. Concurrent mosquito-borne triple infections of dengue, malaria and chikungunya: A case report. J Vector Borne Dis. 2017;54(2):191-193.
16. Rao MR, Padhy RN, Das MK. Prevalence of dengue viral and malaria parasitic co-infections in an epidemic district, Angul of Odisha, India: An eco-epidemiological and cross-sectional study for the prospective aspects of public health. J Infect Public Health. 2016;9(4):421-8. doi: 10.1016/j.jiph.2015.10.019.
17. Hati AK, Bhattacharjee I, Mukherjee H, et al. Concurrent dengue and malaria in an area in Kolkata. Asian Pac J Trop Med. 2012;5(4):315-7. doi: 10.1016/S1995-7645(12)60046-7.
18. Mohapatra MK, Patra P, Agrawala R. Manifestation and outcome of concurrent malaria and dengue infection. J Vector Borne Dis. 2012;49(4):262-5.
19. Shah PD, Mehta TK. Evaluation of concurrent malaria and dengue infections among febrile patients. Indian J Med Microbiol. 2017;35(3):402-405. doi: 10.4103/ijmm.IJMM_15_455.
20. Barua A, Gill N. A comparative study of concurrent dengue and malaria infection with their monoinfection in a teaching hospital in Mumbai. J Assoc Physicians India. 2016;64(8):49-52.
21. Mediannikov O, Socolovschi C, Edouard S, et al. Common epidemiology of Rickettsia felis infection and malaria, Africa. Emerg Infect Dis. 2013;19(11):1775-83. doi:0.3201/eid1911.130361.
22. Wilairatana P, Kuraeiad S, Rattaprasert P, Kotepui M. Prevalence of malaria and scrub typhus co-infection in febrile patients: a systematic review and meta-analysis. Parasit Vectors. 2021;14(1):471. doi: 10.1186/s13071-021-04969-y.
23. Patil R, Kulkarni S. Evaluation of acute febrile illness in patients presenting to a tertiary care hospital. Evolution Med Dent Sci. 2019;8:3801–4.
24. Singh R, Singh SP, Ahmad N. A study of etiological pattern in an epidemic of acute febrile illness during monsoon in a tertiary health care institute of Uttarakhand, India. J Clin Diagn Res. 2014;8:Mc1-3.
25. Wilairatana P, Mala W, Rattaprasert P, Kotepui K, Kotepui M. Prevalence of malaria and leptospirosis co-infection among febrile patients: A systematic review and meta-analysis. Trop Med Infect Dis. 2021;6(3):122. doi: 10.3390/tropicalmed6030122.
26. Sharma S, Mandal A, Vijayachari P. Investigation of malaria among patients of febrile illness and co-infection with leptospirosis in Andaman and Nicobar Islands, India. Res J Microbiol. 2014; 9(2): 104-110. doi: 10.3923/jm.2014.104.110.
27. Phu NH, Day NPJ, Tuan PQ, et al. Concomitant bacteremia in adults with severe falciparum malaria. Clin Infect Dis. 2020;71(9):e465-e470. doi: 10.1093/cid/ciaa191.
28. Das LK, Padhi B, Sahu SS. Prediction of outcome of severe falciparum malaria in Koraput, Odisha, India: A hospital-based study. Trop Parasitol. 2014;4(2):105-10. doi: 10.4103/2229-5070.138538.
29. Teo TH, Lum FM, Ghaffar K, et al. Plasmodium co-infection protects against chikungunya virus-induced pathologies. Nat Commun. 2018;9(1):3905. doi: 10.1038/s41467-018-06227-9.
30. Bhaskaran D, Chadha SS, Sarin S, Sen R, Arafah S, Dittrich S. Diagnostic tools used in the evaluation of acute febrile illness in South India: a scoping review. BMC Infect Dis. 2019;19(1):970. doi: 10.1186/s12879-019-4589-8.
31. Stepwise Guide for Diagnosis and Management of Acute Fever in Primary Care. New Delhi, India. Available from https://www.ima-india.org/ima/pdfdata/Treatment-Algorithm-Booklet-03122021.pdf
32. Cumberland P, Everard CO, Wheeler JG, Levett PN. Persistence of anti-leptospiral IgM, IgG and agglutinating antibodies in patients presenting with acute febrile illness in Barbados 1979-1989. Eur J Epidemiol. 2001;17(7):601-8. doi: 10.1023/a:1015509105668.
33. Carvajal Aristizabal L, Ciuoderis K, Pérez-Restrepo LS, Osorio JE, Hernández-Ortiz JP. Multiplex PCR assays developed for neglected pathogen detection in undifferentiated acute febrile illness cases in tropical regions. Mem Inst Oswaldo Cruz. 2024;119:e240053. doi: 10.1590/0074-02760240053.
34. Okamoto M, Maejima M, Goto T, et al. Impact of the filmarray rapid multiplex pcr assay on clinical outcomes of patients with bacteremia. Diagnostics (Basel). 2023;13(11):1935. doi: 10.3390/diagnostics13111935.
35. Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: A systematic review and meta-analysis. Clin Infect Dis. 2017;64(1):15-23. doi: 10.1093/cid/ciw649.