Vanadium Enhancing Bone Healing: A Comprehensive Review
Main Article Content
Abstract
Bone fractures and defects present significant challenges in orthopedic medicine, necessitating effective therapeutic strategies to expedite healing and restore skeletal function. Vanadium, a trace element with insulin-mimetic properties, has garnered attention for its potential role in enhancing bone healing. The concept of using local vanadium supplementation in the context of systemic diseases, such as diabetes mellitus, is not entirely new. Vanadium compounds, notably vanadyl acetylacetonate (VAC), have been recognized for their insulin-mimetic properties.1-5 In comparison to other orthobiologics like insulin and bone morphogenetic protein (BMP), vanadium compounds are highly stable, free from storage and contamination concerns, and can endure high elevated temperatures.6 This allows for the potential utilization of vanadium surface modification of orthopedic implants. Prior research, outlined in this review report, shows that the use of VAC can accelerate the rate of fracture healing in non-diabetic rats.7,8 This review synthesizes current literature on the mechanisms through which vanadium influences bone regeneration, focusing on preclinical studies utilizing a rat model. Key findings suggest that vanadium promotes osteoblast differentiation, inhibits osteoclast activity, and enhances biomechanical properties of healed bone. Controlled release systems for vanadium delivery may hold promise in optimizing its therapeutic efficacy. Dosing and controlled delivery can mitigate safety concerns while optimizing healing. Future research should aim to elucidate molecular mechanisms, explore synergistic effects with other bioactive agents, and conduct clinical trials to validate vanadium's efficacy and safety in human bone healing applications.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Ma Z, Fu Q. Comparison of hypoglycemic activity and toxicity of vanadium (IV) and vanadium (V) absorbed in fermented mushroom of Coprinus comatus. Biol Trace Elem Res. Dec 2009;132(1-3):278-84. doi:10.1007/s12011-009-8394-x
3. Pei Y, Fu Q. The effects of vanadium (V) absorbed by Coprinus comatus on bone in streptozotocin-induced diabetic rats. Biol Trace Elem Res. Sep 2011;142(3):748-59. doi:10.1007/s12011-010-8825-8
4. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C. Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. Apr 2009;103(4):554-8. doi:10.1016/j.jinorgbio.2008.12.003
5. Zhang SQ, Zhong XY, Lu WL, et al. Pharmacodynamics and pharmacokinetics of the insulin-mimetic agent vanadyl acetylacetonate in non-diabetic and diabetic rats. J Inorg Biochem. May 2005;99(5):1064-75. doi:10.1016/j.jinorgbio.2005.01.015
6. Ippolito JA, Krell ES, Cottrell J, et al. Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res. Oct 2017;35(10):2174-2180. doi:10.1002/jor.23521
7. Paglia DN, Wey A, Park AG, et al. The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing. J Orthop Res. Dec 2012;30(12):1971-8. doi:10.1002/jor.22159
8. Paglia DN, Wey A, Hreha J, et al. Local vanadium release from a calcium sulfate carrier accelerates fracture healing. J Orthop Res. May 2014;32(5):727-34. doi:10.1002/jor.22570
9. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration. 2020;1:6-18. doi:10.1016/j.engreg.2020.05.003
10. Schwartz CE, Martha JF, Kowalski P, et al. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. Health Qual Life Outcomes. May 29 2009;7:49. doi:10.1186/1477-7525-7-49
11. Klein GL. Insulin and bone: Recent developments. World J Diabetes. Feb 15 2014;5(1):14-6. doi:10.4239/wjd.v5.i1.14
12. Paglia DN, Wey A, Breitbart EA, et al. Effects of local insulin delivery on subperiosteal angiogenesis and mineralized tissue formation during fracture healing. J Orthop Res. May 2013;31(5):783-91. doi:10.1002/jor.22288
13. Park AG, Paglia DN, Al-Zube L, et al. Local insulin therapy affects fracture healing in a rat model. J Orthop Res. May 2013;31(5):776-82. doi:10.1002/jor.22287
14. Evans CH. Advances in regenerative orthopedics. Mayo Clin Proc. Nov 2013;88(11):1323-39. doi:10.1016/j.mayocp.2013.04.027
15. Parma L, Peters HAB, Johansson ME, et al. Bis(maltolato)oxovanadium(IV) Induces Angiogenesis via Phosphorylation of VEGFR2. Int J Mol Sci. Jun 30 2020;21(13)doi:10.3390/ijms21134643
16. Makinen MW, Salehitazangi M. The Structural Basis of Action of Vanadyl (VO(2+)) Chelates in Cells. Coord Chem Rev. Nov 1 2014;279:1-22. doi:10.1016/j.ccr.2014.07.003
17. Tripathi D, Mani V, Pal RP. Vanadium in Biosphere and Its Role in Biological Processes. Biol Trace Elem Res. Nov 2018;186(1):52-67. doi:10.1007/s12011-018-1289-y
18. Zhang SQ, Chen GH, Lu WL, Zhang Q. Effects on the bones of vanadyl acetylacetonate by oral administration: a comparison study in diabetic rats. J Bone Miner Metab. 2007;25(5):293-301. doi:10.1007/s00774-007-0759-7
19. Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev. Jan-Feb 2001;17(1):55-66. doi:10.1002/1520-7560(2000)9999:9999<::aid-dmrr165>3.0.co;2-j
20. Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev. Feb 2004;104(2):849-902. doi:10.1021/cr020607t
21. Rehder D. Vanadium. Its role for humans. Met Ions Life Sci. 2013;13:139-69. doi:10.1007/978-94-007-7500-8_5
22. Amaral L, Moniz T, Silva AMN, Rangel M. Vanadium Compounds with Antidiabetic Potential. Int J Mol Sci. Oct 27 2023;24(21)doi:10.3390/ijms242115675
23. Mehdi MZ, Srivastava AK. Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: mechanism of insulinomimesis. Arch Biochem Biophys. Aug 15 2005;440(2):158-64. doi:10.1016/j.abb.2005.06.008
24. Irving E, Stoker A. Vanadium Compounds as PTP Inhibitors. Molecules. 2017;22(12):2269. doi:10.3390/molecules22122269
25. Lyonnet Bl, Martz F, Martin Et. De l'emploi thérapeutique des dérivés du vanadium : vanadate de soude. Assoc. typogr; 1899.
26. Goldfine AB, Patti ME, Zuberi L, et al. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism. Mar 2000;49(3):400-10. doi:10.1016/s0026-0495(00)90418-9
27. Nowakowski P, Naliwajko SK, Markiewicz-Żukowska R, Borawska MH, Socha K. The two faces of Coprinus comatus-Functional properties and potential hazards. Phytother Res. Nov 2020;34(11):2932-2944. doi:10.1002/ptr.6741
28. Thompson KH, Orvig C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. Dec 2006;100(12):1925-35. doi:10.1016/j.jinorgbio.2006.08.016
29. Smith DM, Pickering RM, Lewith GT. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. Qjm. May 2008;101(5):351-8. doi:10.1093/qjmed/hcn003
30. Mak LH, Woscholski R. Targeting PTEN using small molecule inhibitors. Methods. 2015/05/01/ 2015;77-78:63-68. doi:https://doi.org/10.1016/j.ymeth.2015.02.007
31. Rosivatz E, Matthews JG, McDonald NQ, et al. A Small-Molecule Inhibitor for Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN). ACS Chemical Biology. 2006/12/01 2006;1(12):780-790. doi:10.1021/cb600352f
32. Worby CA, Dixon JE. PTEN. Annu Rev Biochem. 2014;83:641-69. doi:10.1146/annurev-biochem-082411-113907
33. Burgers TA, Hoffmann MF, Collins CJ, et al. Mice lacking pten in osteoblasts have improved intramembranous and late endochondral fracture healing. PLoS One. 2013;8(5):e63857. doi:10.1371/journal.pone.0063857
34. Collins CJ, Vivanco JF, Sokn SA, Williams BO, Burgers TA, Ploeg H-L. Fracture healing in mice lacking Pten in osteoblasts: a micro-computed tomography image-based analysis of the mechanical properties of the femur. Journal of Biomechanics. 2015/01/21/ 2015;48(2):310-317. doi:https://doi.org/10.1016/j.jbiomech.2014.11.028
35. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. May 15 2003;423(6937):337-42. doi:10.1038/nature01658
36. Kawane T, Qin X, Jiang Q, et al. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci Rep. Sep 10 2018;8(1):13551. doi:10.1038/s41598-018-31853-0
37. McGonnell IM, Grigoriadis AE, Lam EW, Price JS, Sunters A. A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol (Lausanne). 2012;3:88. doi:10.3389/fendo.2012.00088
38. Ge C, Xiao G, Jiang D, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. Nov 20 2009;284(47):32533-43. doi:10.1074/jbc.M109.040980
39. Chen J, Long F. mTOR signaling in skeletal development and disease. Bone Research. 2018/01/30 2018;6(1):1. doi:10.1038/s41413-017-0004-5
40. Salasznyk RM, Klees RF, Hughlock MK, Plopper GE. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun Adhes. Sep-Dec 2004;11(5-6):137-53. doi:10.1080/15419060500242836
41. Kim HK, Kim MG, Leem KH. Osteogenic activity of collagen peptide via ERK/MAPK pathway mediated boosting of collagen synthesis and its therapeutic efficacy in osteoporotic bone by back-scattered electron imaging and microarchitecture analysis. Molecules. Dec 12 2013;18(12):15474-89. doi:10.3390/molecules181215474
42. Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol Med Rep. Oct 2018;18(4):3547-3554. doi:10.3892/mmr.2018.9375
43. Gollob JA, Wilhelm S, Carter C, Kelley SL. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. Aug 2006;33(4):392-406. doi:10.1053/j.seminoncol.2006.04.002
44. Schussler SD, Uske K, Marwah P, et al. Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. Aaps j. Jul 2017;19(4):1017-1028. doi:10.1208/s12248-017-0073-9
45. Bergenstock M, Min W, Simon AM, Sabatino C, O'Connor JP. A comparison between the effects of acetaminophen and celecoxib on bone fracture healing in rats. J Orthop Trauma. Nov-Dec 2005;19(10):717-23. doi:10.1097/01.bot.0000184144.98071.5d
46. Alentado VJ, Knox AM, Staut CA, et al. Validation of the modified radiographic union score for tibia fractures (mRUST) in murine femoral fractures. Front Endocrinol (Lausanne). 2022;13:911058. doi:10.3389/fendo.2022.911058
47. Mueller MB, Blunk T, Appel B, et al. Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner. Int Orthop. Jan 2013;37(1):153-8. doi:10.1007/s00264-012-1726-z