Pharmacogenetics of Lead Toxicity
Main Article Content
Abstract
Despite the phasing out of leaded gasoline, lead-based paint and leaded plumbing, lead (Pb) remains a public health risk. Toxicity of Pb occurs primarily due to its inhibition of key enzymes in biosynthesis of heme, a compound required for oxygen biding in bloodstream. One of these enzymes is δ-aminolevulinic acid dehydratase (ALAD), the main binding ligand for Pb in erythrocytes. The ALAD enzyme is encoded by the ALAD gene. This gene has two co-dominant alleles (ALAD1 and ALAD2), three genotypes (ALAD1-1, ALAD1-2 and ALAD2-2) and dozens of detected single nucleotide polymorphisms. The G to C transversion in nucleotide 177 in ALAD2 is the difference between ALAD1 and ALAD2 genotypes. This mutation changed the enzyme activity and is the reason it is suggested that individuals with the less common ALAD2 allele tend to experience a greater susceptibility to Pb toxicity than individuals with ALAD1. However, the association of ALAD polymorphism with Pb toxicity remained inconclusive when Pb exposure resulted in blood Pb level < 10 μg/dL, though numerous studies showed that blood Pb level > 10 μg/dL compromised heme synthesis, with the ALAD activity inversely correlated with blood Pb. This review suggests that use of specific combinations of ALAD single nucleotide polymorphisms as biomarkers for susceptibility to Pb exposure and toxicity might contribute to a better understanding of Pb association with ALAD polymorphism. Based on evidence reviewed herein, the current blood lead reference value of 3.5 μg/dL should be further reduced to 0 μg/dL.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Schwartz J, Pitcher H. The relationship between gasoline lead and blood lead in the United States. J Off Stat. 1989;5(4):421-431.
3. Brody DJ, Pirkle JL, Kramer RA, et al. Blood lead levels in the US population: Phase I of the third National Health and Nutrition Examination Survey (NHANES III, 1968-1991). J Am Med Assoc. 1994;272(4):277-283. Doi: 10.1001/jama.272.4.277
4. Pirkle JL, Kaufmann RB, Brody DJ, et al. Exposure of the U.S. population to lead, 1991-1994. Environ Health Perspect. 1998;106(11):745-750. Doi: 10.1289/ehp.98106745
5. Jones RL, Homa DM, Meyer PA, et al. Trends in blood lead levels and blood lead testing among US children aged 1 to 5 years, 1988-2004. Pediat. 2009;123,e376-e385. Doi: 10.1542/peds.2007-3608
6. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for lead. Atlanta, GA: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry; 2020. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=96&tid=22. Last update August 07, 2020 (Accessed Nov 25, 2024)
7. Bergdahl, I.A., Skerfving, S., 2022. Lead, Handbook on the Toxicology of Metals, fifth ed. Elsevier B.V. https://doi.org/10.1016/B978-0-12-822946-0.00036-2.
8. Diawara MM, Litt JS, Unis D, et al. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk. Environ Geochem Health. 2006;28(4):97-315. Doi: 10.1007/s10653-005-9000-6
9. Diawara MM, Shrestha S, Carsella J, Farmer S. Smelting Remains a Public Health Risk Nearly a Century Later: A Case Study in Pueblo, Colorado, USA. Int J Environ Res Public Health. 2018;15(5):932. Doi: 10.3390/ijerph15050932
10. Collin MS, Venkatraman SK, Vijayakumar N, et al. Bioaccumulation of lead (Pb) and its effects on human: A review, Journal of Hazardous Materials Advances. 2022;7,100094,ISSN 2772-4166.
11. Landrigan PJ, Gehlbach SH, Rosenblum BF, et al. Epidemic lead absorption near an ore smelter: The role of particulate lead, N Engl J Med. 1975;292(3)123-129. Doi: 10.1056/NEJM197501162920302
12. Clark HF, Hausladen DM, Brabander DJ, Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design. Environ Res. 2008;107(3):312-319. Doi: 10.1016/j.envres.2008.03.003
13. Balachandar R, Bagepally BS, Kalahasthi R, Haridoss M. Blood lead levels and male reproductive hormones: A systematic review and meta-analysis. Toxicology. 2020;443:152574. Doi: 10.1016/j.tox.2020.152574
14. Gidlow DA. Lead toxicity. Occup Med (Lond). 2015 Jul;65(5):348-56. Doi: 10.1093/occmed/kqv018. Erratum in: Occup Med (Lond). 2015 Dec;65(9):770. Doi: 10.1093/occmed/kqv170. Doi: 10.1093/occmed/kqv018
15. Stajnko A, Palir N, Snoj Tratnik J, et al. Genetic susceptibility to low-level lead exposure in men: Insights from ALAD polymorphisms. Int J Hyg Environ Health. 2024 Mar;256:114315. PMID: 38168581. Doi: 10.1016/j.ijheh.2023.114315
16. Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci. 2017;54(7-8):506-528. Doi: 10.1080/10408363.2017.1408562
17. Ruckart PZ, Jones RL, Courtney JG, et al. Update of the Blood Lead Reference Value — United States, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1509–1512. Doi: http://dx.doi.org/10.15585/mmwr.mm7043a4
18. Wang X, Bakulski KM, Mukherjee B, Hu H, Park SK. Predicting cumulative lead (Pb) exposure using the Super Learner algorithm. Chemosphere. 2023 Jan;311(Pt 2):137125. Doi: 10.1016/j.chemosphere.2022.137125
19. Center for Disease Control and Prevention. 2024. CDC Updates Blood Lead Reference Value. https://www.cdc.gov/lead-prevention/php/news-features/updates-blood-lead-reference-value.html Last update April 2024. (Accessed Nov 25, 2024).
20. Barry PS, Mossman DB. Lead concentrations in human tissues. Br J Ind Med. 1970;27(4):339-51. Doi: 10.1136/oem.27.4.339
21. Rabinowitz MB. Toxicokinetics of bone lead. Environ Health Perspect. 1991;91:33-37. Doi: 10.1289/ehp.919133
22. Oliveira S, Aro A, Sparrow D, et al. Season modifies the relationship between bone and blood lead levels: the Normative Aging Study. Arch Environ Health. 2002;57(5):466–472. Doi: 10.1080/00039890209601439
23. Wilker E, Korrick S, Nie LH, et al. Longitudinal changes in bone lead levels: the VA normative aging study. J. Occup. Environ. Med. 2011;53(8):850–855. Doi: 10.1097/JOM.0b013e31822589a9
24. Bellinger D, Leviton A, Waternaux C, Needleman H, Rabinowitz M. Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med. 1987;316(17):1037-43. Doi: 10.1056/NEJM198704233161701
25. Needleman HL, Gatsonis CA. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. JAMA. 1990;263(5):673-8.
26. Al-Saleh I, Shinwari N, Nester M, et al. Longitudinal study of prenatal and postnatal lead exposure and early cognitive development in Al-Kharj, Saudi Arabia: a preliminary results of cord blood lead levels. J Trop Pediatr. 2008;54(5):300-7. Doi: 10.1093/tropej/fmn019
27. Hu WY, Wu SH, Wang LL, Wang GI, Fan H, Liu ZM. A toxicological and epidemiological study on reproductive functions of male workers exposed to lead. J Hyg Epidemiol Microbiol Immunol. 1992;36(1):25-30.
28. Kumar S. Occupational and environmental exposure to lead and reproductive health impairment: an overview. Indian J. Occup. Environ. Med. 2018;22(3)128–137. Doi: 10.4103/ijoem.IJOEM_126_18
29. Fischbein A, Tsang P, Luo JC, Bekesi JG. The immune system as target for subclinical lead related toxicity. Br J Ind Med. 1993;50(2):185-6. Doi: 10.1136/oem.50.2.185
30. Bjørklund G, Mutter J, Aaseth J. Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch Toxicol. 2017;91(12):3787-3797. Doi: 10.1007/s00204-017-2100-0
31. Rouzi L, Elhamri H, Kalouch S, et al. Lead poisoning with encephalic and neuropathic involvement in a child: case report. Pan Afr Med J. 2022 Aug 12;42:276. Doi: 10.11604/pamj.2022.42.276.33007
32. Kaneko M, Kazatani T, Shikata H. Occupational Lead Poisoning in a Patient with Acute Abdomen and Normocytic Anemia. Intern Med. 2020;59(12):1565-1570. Doi: 10.2169/internalmedicine.4176-19
33. Yang Y, Li S, Wang H, Liu M, et al. Chronic lead poisoning induced abdominal pain and anemia: a case report and review of the literature. BMC Gastroenterol. 2020 Oct 14;20(1):335. Doi: 10.1186/s12876-020-01482-x
34. Kopp SJ, Barron JT, Tow JP. Cardiovascular actions of lead and relationship to hypertension: a review. Environ Health Perspect. 1988;78:91-9. Doi: 10.1289/ehp.887891
35. Scinicariello F, Yesupriya A, Chang MH, Fowler BA; Centers for Disease Control and Prevention/National Cancer Institute National Health and Nutrition Examination Survey III Genomics Working Group. Modification by ALAD of the association between blood lead and blood pressure in the U.S. population: results from the Third National Health and Nutrition Examination Survey. Environ Health Perspect. 2010 Feb;118(2):259-64. Doi: 10.1289/ehp.0900866. Erratum in: Environ Health Perspect. 2010 Oct;118(10):A426. PMID: 20123609; PMCID: PMC2831927. Doi: 10.1289/ehp.0900866
36. Kennedy DA, Woodland C, Koren G. Lead exposure, gestational hypertension and pre-eclampsia: a systematic review of cause and effect. J Obstet Gynaecol. 2012;32(6):512-7. Doi: 10.3109/01443615.2012.693987
37. Yu YL, An DW, Chori BS, Nawrot TS, Staessen JA. Blood pressure and hypertension in relation to lead exposure updated according to present-day blood lead levels. Kardiol Pol. 2023;81(7-8):675-683. Doi: 10.33963/KP.a2023.0142
38. Chia KS, Jeyaratnam J, Lee J, et al. Lead-induced nephropathy: relationship between various biological exposure indices and early markers of nephrotoxicity. Am J Ind Med. 1995;27(6):883-95. Doi: 10.1002/ajim.4700270612
39. Lim YC, Chia KS, Ong HY, Ng V, Chew YL. Renal dysfunction in workers exposed to inorganic lead. Ann Acad Med Singap. 2001;30(2):112-7.
40. Chia SE, Zhou H, Tham MT, et al. Possible influence of delta-aminolevulinic acid dehydratase polymorphism and susceptibility to renal toxicity of lead: a study of a Vietnamese population. Environ Health Perspect. 2005;113(10):1313-7. Doi: 10.1289/ehp.7904
41. Flora G, Gupta D, Tiwari A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. 2012;5(2):47-58. Doi: 10.2478/v10102-012-0009-2
42. NTP, 2012. NTP Monograph on Health Effects of Low-Level Lead National Toxicology Program. U.S. Department of Health and Human Services. https://pubmed.ncbi.nlm.nih.gov/23964424/
43. EFSA Panel on Contaminants in the Food Chain (CONTAM). 2010. Scientific opinion on lead in food. EFSA Journal 2010; 8(4):1570. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2010.1570
44. Lanphear BP, Hornung R, Khoury J, et al. Low-level environmental lead exposure and children's intellectual function: an international pooled analysis. Environ Health Perspect. 2005 Jul;113(7):894-9. Doi: 10.1289/ehp.7688. Erratum in: Environ Health Perspect. 2019 Sep;127(9):99001. Doi: 10.1289/EHP5685. PMID: 16002379; PMCID: PMC1257652. Doi: 10.1289/ehp.7688
45. Pirkle JL, Brody DJ, Gunter EW, et al. The decline in blood lead levels in the United States: The National Health and Nutrition Examination Surveys (NHANES). JAMA. 1994;272(4):284-291.
46. Mari M, Nadal M, Schuhmacher M, et al. 2014. Human exposure to metals: Levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol Trace Elem Res. 159(1-3):15-21. Doi: 10.1007/s12011-014-9957-z
47. Jarvie AWP, Whitmore AP, Markall RN, Potter HR. Lead biomethylation, an elusive goal, Environmental Pollution Series B, Chemical and Physical. Volume 6, Issue 2, 1983, Pages 81-94, ISSN 0143-148X.
48. Fatoki OS. Biomethylation in the natural environment: A review. South African Journal of Science. 1997;93:366-370.
49. Gonick HC. Lead-binding proteins: a review. J Toxicol. 2011;2011:686050. Doi: 10.1155/2011/686050
50. Bergdahl IA, Grubb A, Schutz A, et al. Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes. Pharmacol Toxicol. 1997;81:153-158. Doi: 10.1111/j.1600-0773.1997.tb02061.x
51. Barltrop D, Smith A. Interaction of lead with erythrocytes. Experientia. 1971;27:92-93. Doi: 10.1007/BF02137760
52. Barltrop D, Smith A. Lead binding to human haemoglobin. Experientia. 1972;28:76-77. Doi: 10.1007/BF01928273
53. Ong CN, Lee WR. Distribution of lead-203 in human peripheral blood in vitro. Br J Ind Med. 1980 Feb;37(1):78-84. Doi: 10.1136/oem.37.1.78
54. Lolin Y, O'Gorman P. An intra-erythrocytic low molecular weight lead-binding protein in acute and chronic lead exposure and its possible protective role in lead toxicity. Ann Clin Biochem. 1988 Nov;25 ( Pt 6):688-97. Doi: 10.1177/000456328802500616
55. Bergdahl IA, Sheveleva M, Schutz A, Artamonova VG, Skerfving S. Plasma and blood lead in humans: Capacity-limited binding to delta-aminolevulinic acid dehydratase and other lead-binding components. Toxicol Sci. 1998;46:247-253. Doi: 10.1006/toxs.1998.2535
56. Xie Y, Chiba M, Shinohara A, Watanabe H, Inaba Y. Studies on lead-binding protein and interaction between lead and selenium in the human erythrocytes. Ind Health. 1998;36(3):234-9. Doi: 10.2486/indhealth.36.234
57. Warren MJ, Cooper JB, Wood SP, Shoolingin-Jordan PM. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci. 1998;23(6):217-21. Doi: 10.1016/s0968-0004(98)01219-5
58. Skerfving S, Bergdahl IA. 2015. Lead. In: Nordberg, G.F., Fowler, B.a., Nordberg, M. (Eds.), Handbook on the Toxicology of Metals. Academic Press, USA, pp. 911–967. https://doi.org/10.1016/C2011-0-07884-5.
59. Doss M, Müller WA. Acute lead poisoning in inherited porphobilinogen synthase (delta-aminolevulinic acid dehydrase) deficiency. Blut. 1982;45(2):131-9. Doi: 10.1007/BF00319941
60. Liu C, Huo X, Lin P, Zhang Y, Li W, Xu X. Association between blood erythrocyte lead concentrations and hemoglobin levels in preschool children. Environ Sci Pollut Res Int. 2015;22(12):9233-40. Doi: 10.1007/s11356-014-3992-3
61. Wetmur JG, Kaya AH, Plewinska M, Desnick RJ. Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: Implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet. 1991;49:757-763.
62. Wetmur JG, Lehnert G, Desnick RJ. The delta-aminolevulinate dehydratase polymorphism: Higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ Res. 1991;56:109-119. Doi: 10.1016/s0013-9351(05)80001-5
63. Wetmur JG. Influence of the common human delta-aminolevulinate dehydratase polymorphism on lead body burden. Environ Health Perspect. 1994;102(Suppl 3):215-9. Doi: 10.1289/ehp.94102s3215
64. Tomokuni K, Ichiba M, Hirai Y. Elevated urinary excretion of baminoisobutyric acid and δ-aminolevulinic acid (ALA) and the inhibition of ALA-synthase and ALA-dehydratase activities in both liver and kidney in mice exposed to lead. Toxicol Lett. 1991;59(1-3):169-173. Doi: 10.1016/0378-4274(91)90069-i
65. Wetmur JG, Bishop DF, Cantelmo C, Desnick, RJ. Human delta-aminolevulinate dehydratase: nucleotide sequence of a full-length cDNA clone. Proc Natl Acad Sci USA. 1986;83(20):7703-7707. Doi: 10.1073/pnas.83.20.7703
66. Fujiwara T, Harigae H. Biology of Heme in Mammalian Erythroid Cells and Related Disorders. Biomed Res Int. 2015;2015:278536. Doi: 10.1155/2015/278536
67. Jaffe EK, Salowe SP, Chen NT, DeHaven PA. Porphobilinogen synthase modification with methylmethanethiosulfonate. A protocol for the investigation of metalloproteins. J Biol Chem. 1984;25;259(8):5032-6.
68. Goering PL. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology. 1993;14(2-3):45-60.
69. Onalaja AO, Claudio L. Genetic susceptibility to lead poisoning. Environ Health Perspect. 2000 Mar;108 Suppl 1(Suppl 1):23-8. Doi: 10.1289/ehp.00108s123
70. Astrin KH, Bishop DF, Wetmur JG, Kaul B, Davidow B, Desnick RJ. delta-Aminolevulinic acid dehydratase isozymes and lead toxicity. Ann N Y Acad Sci. 1987;514:23-9. Doi: 10.1111/j.1749-6632.1987.tb48757.x
71. Mani MS, Kunnathully V, Rao C, Kabekkodu SP, Joshi MB, D'Souza HS. Modifying effects of δ-Aminolevulinate dehydratase polymorphism on blood lead levels and ALAD activity. Toxicol Lett. 2018;295:351-356. Doi: 10.1016/j.toxlet.2018.07.014
72. Fleming DE, Chettle DR, Wetmur JG, et al. Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers. Environ Res. 1998;77(1):49-61. Doi: 10.1006/enrs.1997.3818
73. Kelada SN, Shelton E, Kaufmann RB, Khoury MJ. Delta-aminolevulinic acid dehydratase genotype and lead toxicity: A human genome epidemiology (HuGE) review. Am J Epidemiol. 2001;154(1):1-13. Doi: 10.1093/aje/154.1.1
74. Scinicariello F, Yesupriya A, Chang MH, Fowler BA; Centers for Disease Control and Prevention/National Cancer Institute National Health and Nutrition Examination Survey III Genomics Working Group. Modification by ALAD of the association between blood lead and blood pressure in the U.S. population: results from the Third National Health and Nutrition Examination Survey. Environ Health Perspect. 2010;118(2):259-64. Erratum in: Environ Health Perspect. 2010;118(10):A426. Doi: 10.1289/ehp.0900866
75. Qader A, Rehman K, Akash MSH. 2021. Genetic susceptibility of δ-ALAD associated with lead (Pb) intoxication: sources of exposure, preventive measures, and treatment interventions. Environ Sci Pollut Res Int. 2021;28(33):44818-44832. Doi: 10.1007/s11356-021-15323-1
76. Ziemsen B, Angerer J, Lehnert G, Benkmann HG, Goedde HW. Polymorphism of δ-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health. 1986;58:245–247. Doi: 10.1007/BF00432107
77. Chia SE, Yap E, Chia KS. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism and susceptibility of workers exposed to inorganic lead and its effects on neurobehavioral functions. Neurotoxicology. 2004;25(6):1041-7. Doi: 10.1016/j.neuro.2004.01.010
78. Smith CM, Wang X, Hu H, Kelsey KT. A polymorphism in the delta- aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect. 1995;103:248-253. Doi: 10.1289/ehp.95103248
79. Hu H, Wu MT, Cheng Y, Sparrow D, Weiss S, Kelsey K. The delta-aminolevulinic acid dehydratase (ALAD) polymorphism and bone and blood lead levels in community-exposed men: the Normative Aging Study. Environ Health Perspect. 2001;109(8):827-32. Doi: 10.1289/ehp.01109827
80. Pérez-Bravo F, Ruz M, Morán-Jiménez MJ, et al. Association between aminolevulinate dehydrase genotypes and blood lead levels in children from a lead-contaminated area in Antofagasta, Chile. Arch Environ Contam Toxicol. 2004;47(2):276-80. Doi: 10.1007/s00244-004-2215-1
81. Ahamed M, Verma S, Kumar A, Siddiqui MK. Delta-aminolevulinic acid dehydratase inhibition and oxidative stress in relation to blood lead among urban adolescents. Hum Exp Toxicol. 2006;25(9):547-53. Doi: 10.1191/0960327106het657oa
82. Scinicariello F, Murray HE, Moffett DB, Abadin HG, Sexton MJ, Fowler BA. Lead and delta-aminolevulinic acid dehydratase polymorphism: Where does it lead? A meta-analysis. Environ Health Perspect. 2007;115(1):35-41. Doi: 10.1289/ehp.9448
83. Wang Q, Zhao HH, Chen JW, et al. Delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure. Int J Hyg Environ Health. 2010;213(1):52-8. Doi: 10.1016/j.ijheh.2009.08.003
84. Miyaki K, Lwin H, Masaki K, et al. Association between a polymorphism of aminolevulinate dehydrogenase (ALAD) gene and blood lead levels in Japanese subjects. Int J Environ Res Public Health. 2009;6(3):999-1009. Doi: 10.3390/ijerph6030999
85. Kayaaltı Z, Sert S, Kaya-Akyüzlü D, Söylemez E, Söylemezoğlu T. Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels. Environ Toxicol Pharmacol. 2016;41:147-51. Doi: 10.1016/j.etap.2015.11.017
86. Yang Y, Wu J, Sun P. Effects of delta-aminolevulinic acid dehydratase polymorphisms on susceptibility to lead in Han subjects from southwestern China. Int J Environ Res Public Health. 2012;9(7):2326-38. Doi: 10.3390/ijerph9072326
87. Sahu MC, Upadhyay K, Gupta S, Chanania K, Pati S. DNA damage and ALAD polymorphism in high blood lead (Pb) levels of pregnant women attending a tertiary care teaching hospital. Eur J Obstet Gynecol Reprod Biol X. 2024 Mar 27;22:100300. Doi: 10.1016/j.eurox.2024.100300
88. Palir N, Stajnko A, Snoj Tratnik J, et al. ALAD and APOE polymorphisms are associated with lead and mercury levels in Italian pregnant women and their newborns with adequate nutritional status of zinc and selenium. Environ Res. 2023 Mar 1;220:115226. Doi: 10.1016/j.envres.2023.115226
89. Rabstein S, Unfried K, Ranft U, et al. Lack of association of delta-aminolevulinate dehydratase polymorphisms with blood lead levels and hemoglobin in Romanian women from a lead-contaminated region. J Toxicol Environ Health A. 2008;71(11-12):716-24. Doi: 10.1080/15287390801985190
90. Szymańska-Chabowska A, Łaczmański Ł, Jędrychowska I, et al. The relationship between selected VDR, HFE and ALAD gene polymorphisms and several basic toxicological parameters among persons occupationally exposed to lead. Toxicology. 2015 Aug 6;334:12-21. Doi: 10.1016/j.tox.2015.05.002
91. Sithisarankul P, Schwartz BS, Lee BK, Kelsey KT, Strickland PT. Aminolevulinic acid dehydratase genotype mediates plasma levels of the neurotoxin, 5-aminolevulinic acid, in lead-exposed workers. Am J Ind Med. 1997;32(1):15-20. Doi: 10.1002/(sici)1097-0274(199707)32:1<15::aid-ajim2>3.0.co;2-q